本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
361 | 2025-02-21 |
LSTM based stock prediction using weighted and categorized financial news
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0282234
PMID:36881605
|
研究论文 | 本文提出了一种基于LSTM的加权和分类金融新闻股票预测模型(WCN-LSTM),通过结合加权新闻类别来增强预测准确性 | 提出了一种新的股票预测模型WCN-LSTM,该模型结合了加权新闻类别,并引入了混合输入、基于词典的情感分析和深度学习等技术 | 研究仅限于巴基斯坦股票交易所(PSX)的数据,未在其他市场验证 | 提高股票市场预测的准确性 | 巴基斯坦股票交易所(PSX)的股票数据 | 自然语言处理 | NA | 情感分析、深度学习 | LSTM | 文本 | NA |
362 | 2025-02-21 |
An automatic music generation and evaluation method based on transfer learning
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0283103
PMID:37163469
|
研究论文 | 本文提出了一种基于迁移学习的自动音乐生成与评估方法,利用改进的GPT-2模型生成音乐旋律,并通过结合数学统计、音乐理论和信号处理方法的评估方法进行客观评价 | 提出了一种类似文本的音乐表示方法,使现有预训练模型能够用于符号音乐生成,并开发了MT-GPT-2模型和新的音乐评估方法 | 未提及具体的数据集规模或生成音乐的多样性限制 | 探索基于深度学习的自动音乐生成与评估方法 | 音乐旋律的生成与评估 | 自然语言处理 | NA | 迁移学习 | GPT-2, LSTM, Leak-GAN, Music SketchNet | 符号音乐数据 | NA |
363 | 2025-02-21 |
A deep attention LSTM embedded aggregation network for multiple histopathological images
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0287301
PMID:37384648
|
研究论文 | 本文提出了一种深度注意力长短期记忆嵌入聚合网络(DALAN),用于处理多病灶的病理图像,以提高患者层面的生存分析预测准确性 | 提出了一种新的深度学习模型DALAN,结合了注意力机制和LSTM层,能够同时进行特征提取和病灶图像的聚合,从而在患者层面提供准确的生存预测 | 未提及具体的数据集规模限制或模型在其他类型数据上的泛化能力 | 开发一种能够在患者层面准确预测生存率的深度学习模型 | 多病灶的病理图像 | 数字病理学 | 癌症 | 深度学习 | CNN, 注意力机制, LSTM | 图像 | 模拟数据集(MNIST和Cancer数据集)和真实数据集(TCGA数据集) |
364 | 2025-02-21 |
Pressure Prediction on Mechanical Ventilation Control Using Bidirectional Long-Short Term Memory Neural Networks
2023, Advances in experimental medicine and biology
DOI:10.1007/978-3-031-31982-2_3
PMID:37486476
|
研究论文 | 本文开发了一种使用人工神经网络的模型,旨在使呼吸机更加智能和个性化,以满足每位患者的需求 | 使用双向长短期记忆神经网络(BiLSTM)预测机械通气中的压力,以提高呼吸机的智能化和个性化 | 模型训练使用的是人工数据,可能无法完全反映真实临床环境中的复杂性 | 提高机械通气系统的智能化和个性化,以更好地满足患者需求 | 机械通气系统中的压力预测 | 机器学习 | NA | 人工神经网络 | 双向长短期记忆神经网络(BiLSTM) | 人工数据 | NA |
365 | 2025-02-21 |
An improved long short term memory network for intrusion detection
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0284795
PMID:37527249
|
研究论文 | 本文提出了一种改进的长短期记忆网络(ILSTM)算法,用于提高入侵检测系统的准确性和精度 | 提出了一种结合混沌蝴蝶优化算法(CBOA)和粒子群优化(PSO)的改进LSTM算法,以提高LSTM的准确性 | 需要高迭代次数以实现高性能 | 提高入侵检测系统的准确性和精度 | 网络流量数据 | 机器学习 | NA | 混沌蝴蝶优化算法(CBOA)和粒子群优化(PSO) | LSTM | 网络流量数据 | 两个公共数据集(NSL-KDD数据集和LITNET-2020) |
366 | 2025-02-20 |
Author Correction: Deep learning enables fast, gentle STED microscopy
2023-Aug-10, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-023-05222-1
PMID:37563357
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
367 | 2025-02-20 |
Deep learning enables fast, gentle STED microscopy
2023-06-27, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-023-05054-z
PMID:37369761
|
研究论文 | 本文介绍了利用深度学习恢复STED显微镜图像的方法,以减少光漂白和光损伤,并显著降低像素停留时间 | 通过深度学习技术,实现了对STED显微镜图像的快速、温和恢复,减少了光漂白和光损伤,并显著降低了像素停留时间 | NA | 研究目的是通过深度学习技术改进STED显微镜成像,减少光漂白和光损伤,并提高成像效率 | STED显微镜图像 | 计算机视觉 | NA | STED显微镜 | 深度学习 | 图像 | NA |
368 | 2025-02-20 |
Accurate Prediction of Transcriptional Activity of Single Missense Variants in HIV Tat with Deep Learning
2023-Mar-24, International journal of molecular sciences
IF:4.9Q2
DOI:10.3390/ijms24076138
PMID:37047108
|
研究论文 | 本文提出了一种结合GigaAssay和深度学习的方法,用于预测HIV Tat基因中单错义变体的转录活性 | 首次将深度学习应用于预测HIV Tat基因单错义变体的转录活性,并取得了高精度的预测结果 | 目前仅适用于单错义变体,尚未扩展到更复杂的Tat等位基因 | 更好地理解HIV基因组转录的遗传控制,以帮助理解AIDS的病理和治疗 | HIV Tat基因的单错义变体 | 机器学习 | AIDS | GigaAssay, 深度学习 | 深度学习 | 实验数据 | NA |
369 | 2025-02-19 |
Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15
2023-12, Proteins
IF:3.2Q2
DOI:10.1002/prot.26585
PMID:37650367
|
研究论文 | 本文报告了UM-TBM和Zheng团队在CASP15中蛋白质单体和复合物结构预测的结果,使用了D-I-TASSER和DMFold-Multimer算法 | D-I-TASSER在CASP15中引入了四个新特性,包括多源MSA搜索、基于注意力网络的空间约束、多域模块和优化的I-TASSER折叠模拟系统,显著提高了预测精度 | 未来在病毒蛋白质建模和复合物模型排名方面仍有改进空间 | 提高蛋白质单体和复合物结构预测的准确性 | 蛋白质单体和复合物 | 生物信息学 | NA | 多序列比对(MSA)、深度学习、蒙特卡罗模拟 | D-I-TASSER、DMFold-Multimer、AlphaFold2 | 蛋白质序列和结构数据 | 47个自由建模目标和38个复合物目标 |
370 | 2025-02-14 |
A deep learning model for novel systemic biomarkers in photographs of the external eye: a retrospective study
2023-05, The Lancet. Digital health
DOI:10.1016/S2589-7500(23)00022-5
PMID:36966118
|
研究论文 | 本研究开发了一种深度学习系统(DLS),通过外部眼部照片预测系统性参数,如肝脏、肾脏、骨骼或矿物质、甲状腺和血液相关参数 | 首次利用外部眼部照片预测多种系统性医学参数,扩展了外部眼部照片在疾病筛查中的应用 | 需要进一步研究以了解其临床应用价值 | 验证外部眼部照片是否包含多种系统性医学条件的信息 | 糖尿病患者及非糖尿病患者的眼部照片 | 计算机视觉 | 糖尿病 | 深度学习 | DLS | 图像 | 123,130张图像,来自38,398名糖尿病患者,并在25,510名患者中进行了验证 |
371 | 2025-02-14 |
Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization
2023-Mar, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2022.100233
PMID:36545260
|
研究论文 | 本研究比较了Vision Transformer深度学习技术(DeiT)和ResNet-50在眼底照片上检测原发性开角型青光眼(POAG)的诊断准确性和可解释性 | 使用Vision Transformer(DeiT)替代传统的卷积神经网络(如ResNet-50),以提高模型的泛化能力和可解释性 | 研究主要基于特定数据集(OHTS)和外部数据集,可能在其他数据集上的表现尚未验证 | 比较Vision Transformer和ResNet-50在检测POAG中的诊断性能,并分析模型决策的可解释性 | 眼底照片 | 计算机视觉 | 青光眼 | 深度学习 | Vision Transformer (DeiT), ResNet-50 | 图像 | 66,715张眼底照片(来自1,636名OHTS参与者)和16,137张外部数据集照片 |
372 | 2025-02-14 |
Usability and Clinician Acceptance of a Deep Learning-Based Clinical Decision Support Tool for Predicting Glaucomatous Visual Field Progression
2023-03-01, Journal of glaucoma
IF:2.0Q2
DOI:10.1097/IJG.0000000000002163
PMID:36877820
|
研究论文 | 本研究评估了临床医生对集成人工智能模型预测的视野指标的临床决策支持工具的接受度和使用情况 | 更新并评估了一种集成人工智能预测视野指标的临床决策支持工具,并首次系统性地评估了临床医生对该工具的信任度和实用性 | 样本量较小,仅涉及10名眼科医生和验光师,且系统可用性评分仅为43百分位数 | 评估临床医生对集成人工智能预测视野指标的临床决策支持工具的接受度和使用情况 | 眼科医生和验光师 | 数字病理学 | 青光眼 | 人工智能模型 | NA | 视野指标 | 10名眼科医生和验光师,6名患者的11只眼睛 |
373 | 2025-02-14 |
Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements
2023-02, American journal of ophthalmology
IF:4.1Q1
DOI:10.1016/j.ajo.2022.10.013
PMID:36328198
|
研究论文 | 本研究利用卷积神经网络(CNN)从光谱域光学相干断层扫描(SD-OCT)视网膜神经纤维层厚度(RNFL)测量中估计青光眼患者的中央10度视野(VF)图 | 提出了一种基于全区域(CNNA)和时间区域(CNNT)RNFL厚度信息的卷积神经网络模型,用于估计10-2 VF图的68个个体敏感度阈值,显著优于线性回归模型 | 研究仅基于SD-OCT扫描和10-2 VF对,未涉及其他类型的影像数据或更大规模的多中心数据 | 通过人工智能方法改进青光眼患者中央10度视野图的估计,以个性化中央视野评估的频率并优化资源分配 | 724名健康患者、疑似青光眼患者和青光眼患者的1365只眼睛的5352次SD-OCT扫描和10-2 VF对 | 计算机视觉 | 青光眼 | 光谱域光学相干断层扫描(SD-OCT) | 卷积神经网络(CNN) | 图像 | 5352次SD-OCT扫描和10-2 VF对,来自1365只眼睛 |
374 | 2025-02-14 |
A novel ensemble-based statistical approach to estimate daily wildfire-specific PM2.5 in California (2006-2020)
2023-01, Environment international
IF:10.3Q1
DOI:10.1016/j.envint.2022.107719
PMID:36592523
|
研究论文 | 本文提出了一种基于集成模型的统计方法,用于估计加利福尼亚州每日特定于野火的PM2.5浓度(2006-2020年) | 首次应用一套统计模型,利用易于获取的数据集,在15年期间提供精细空间尺度的每日特定于野火的PM2.5浓度 | 模型依赖于政府运营的监测站数据,这些监测站分布稀疏,可能遗漏某些地区和潜在脆弱人群 | 估计特定于野火的PM2.5浓度,以支持流行病学研究 | 加利福尼亚州的PM2.5浓度 | 机器学习 | NA | 集成模型 | 梯度提升机、随机森林、深度学习 | 卫星气溶胶属性、气象变量 | 15年(2006-2020年)的每日数据 |
375 | 2025-02-14 |
Monkeypox genome mutation analysis using a timeseries model based on long short-term memory
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0290045
PMID:37611023
|
研究论文 | 本研究使用基于长短期记忆(LSTM)的时间序列模型分析猴痘病毒基因组突变率,并与门控循环单元(GRU)模型进行比较 | 首次使用深度学习模型预测猴痘病毒基因组突变率,并提供了关于猴痘基因突变的新报告 | 数据集的大小和可用性可能限制了模型的泛化能力 | 分析猴痘病毒的基因突变率,并预测未来的突变趋势 | 猴痘病毒基因组 | 机器学习 | 猴痘 | LSTM, GRU | LSTM, GRU | 基因组数据 | 来自NCBI的最新猴痘数据集,包括加拿大、德国和世界其他地区的样本 |
376 | 2025-02-13 |
A Deep Learning Approach to Improve Retinal Structural Predictions and Aid Glaucoma Neuroprotective Clinical Trial Design
2023 Mar-Apr, Ophthalmology. Glaucoma
DOI:10.1016/j.ogla.2022.08.014
PMID:36038107
|
研究论文 | 本文研究了一种深度学习回归方法,用于预测黄斑神经节细胞内丛状层(GCIPL)和视神经头(ONH)视网膜神经纤维层(RNFL)厚度,以辅助青光眼神经保护临床试验设计 | 使用深度学习模型预测GCIPL和RNFL厚度,并利用个体化半视网膜预测来减少临床试验样本量需求 | 模型在预测更严重疾病时的性能略有下降 | 提高视网膜结构预测的准确性,辅助青光眼神经保护临床试验设计 | 青光眼患者 | 计算机视觉 | 青光眼 | 深度学习 | 回归模型 | 图像 | 1096只眼睛(550名患者)的3327对GCIPL/RNFL扫描数据 |
377 | 2025-02-12 |
Mapping the topography of spatial gene expression with interpretable deep learning
2023-Oct-13, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.10.561757
PMID:37873258
|
研究论文 | 本文提出了一种名为GASTON的无监督且可解释的深度学习算法,用于分析空间转录组数据中的基因表达模式 | 引入了称为isodepth的新概念,用于描述组织切片中的基因表达梯度,并开发了GASTON算法来同时学习isodepth、空间基因表达梯度以及基因表达的连续梯度和不连续空间变化 | NA | 解决空间转录组数据稀疏性问题,分析空间基因表达模式 | 空间转录组数据 | 数字病理学 | NA | 空间转录组技术 | 深度学习 | 基因表达数据 | 多个生物系统(包括大脑和肿瘤样本) |
378 | 2025-02-12 |
Capturing continuous, long timescale behavioral changes in Drosophila melanogaster postural data
2023-Sep-07, ArXiv
PMID:37731659
|
研究论文 | 本文通过长时间连续记录果蝇的姿势数据,探索了果蝇行为在不同时间尺度上的变化 | 使用深度学习框架SLEAP生成了包含近20亿个姿势实例的全身体姿势数据集,并分析了果蝇行为在昼夜节律和实验过程中的变化 | 实验环境为无特征竞技场,可能限制了果蝇行为的多样性 | 研究果蝇行为在不同时间尺度上的变化 | 果蝇(Drosophila melanogaster) | 行为分析 | NA | 深度学习框架SLEAP | NA | 姿势数据 | 47只果蝇 |
379 | 2025-02-12 |
Kenichi Harumi Plenary Address at Annual Meeting of the International Society of Computers in Electrocardiology: "What Should ECG Deep Learning Focus on? The diagnosis of acute coronary occlusion!"
2023 Jan-Feb, Journal of electrocardiology
IF:1.3Q3
|
评论 | 本文回顾了从STEMI到OMI的范式转变,并探讨了深度学习在识别急性冠状动脉闭塞中的潜力和陷阱 | 提出深度学习应关注识别OMI而非仅基于STEMI数据库,以革新患者护理 | 深度学习模型若仅基于STEMI数据库开发,可能会强化现有失败的范式 | 探讨深度学习在急性冠状动脉闭塞诊断中的应用潜力 | 急性冠状动脉闭塞患者 | 机器学习 | 心血管疾病 | 深度学习 | 神经网络 | 心电图数据 | NA |
380 | 2025-02-09 |
Novel breath biomarkers identification for early detection of hepatocellular carcinoma and cirrhosis using ML tools and GCMS
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0287465
PMID:37967076
|
研究论文 | 本研究利用机器学习工具和GCMS技术,识别用于早期检测肝细胞癌和肝硬化的新型呼吸生物标志物 | 结合GCMS-SPME技术和创新的机器学习模型,自动从原始数据中发现挥发性有机化合物(VOCs),无需人工干预 | 使用气相色谱-质谱法(GC-MS)量化挥发性有机化合物(VOCs)耗时且容易出错,需要专家操作 | 提高肝细胞癌和肝硬化的早期诊断、治疗和生存率 | 肝细胞癌(HCC)、肝硬化患者和健康对照组的呼吸样本 | 机器学习 | 肝细胞癌 | 气相色谱-质谱法(GCMS)和固相微萃取(SPME) | 深度学习模式识别 | 呼吸样本 | 35例HCC患者、35例肝硬化患者和30例健康对照组的呼吸样本 |