本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 21 | 2025-11-15 |
Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii
2023-11, Nature chemical biology
IF:12.9Q1
DOI:10.1038/s41589-023-01349-8
PMID:37231267
|
研究论文 | 利用深度学习发现针对鲍曼不动杆菌的新型抗生素阿鲍辛 | 首次通过神经网络筛选发现具有窄谱活性的新型抗生素,并揭示其通过干扰LolE蛋白影响脂蛋白运输的独特机制 | 仅针对单一病原体进行验证,尚未评估对其它耐药菌的活性 | 开发针对多重耐药鲍曼不动杆菌的新型抗生素 | 鲍曼不动杆菌菌株及约7,500个小分子化合物 | 机器学习 | 细菌感染 | 体外生长抑制实验、计算机预测、小鼠伤口感染模型 | 神经网络 | 化学分子结构数据、细菌生长数据 | 约7,500个分子化合物 | NA | NA | NA | NA |
| 22 | 2025-11-15 |
A software framework for end-to-end genomic sequence analysis with deep learning
2023-11, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00557-5
PMID:38177600
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 23 | 2025-11-15 |
Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging
2023-10, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-023-09640-8
PMID:37458971
|
研究论文 | 本研究开发基于深度学习的自动分割和分类系统,用于胶质瘤治疗反应评估 | 结合U-Net网络进行肿瘤自动分割和迁移学习分类器,实现胶质瘤治疗反应的自动化评估 | 研究样本量有限(49例患者),仅基于MRI图像进行分析 | 开发基于深度学习的自动化工具用于胶质瘤放疗反应评估 | 胶质瘤患者和BraTS 2018挑战赛数据集 | 数字病理学 | 胶质瘤 | 磁共振成像 | CNN | 图像 | BraTS数据集285例(210 HGG + 75 LGG) + 49例本地患者 | NA | U-Net | p值,置信区间 | NA |
| 24 | 2025-11-15 |
Interpretable neural architecture search and transfer learning for understanding CRISPR/Cas9 off-target enzymatic reactions
2023-Sep-29, ArXiv
PMID:37808087
|
研究论文 | 开发了一个可解释的深度学习框架,用于预测CRISPR/Cas9脱靶编辑概率 | 结合了可解释神经网络架构搜索和迁移学习,既能保持物理可解释性又能实现最先进性能 | 未明确说明样本规模和数据来源的具体限制 | 建立预测性和可解释的酶促反应动力学模型 | CRISPR/Cas9脱靶编辑反应 | 机器学习 | NA | CRISPR/Cas9基因编辑技术 | CNN, 神经网络集成 | 动力学测定数据,细胞环境数据 | NA | NA | KINN(动力学可解释神经网络),卷积神经网络 | NA | NA |
| 25 | 2025-11-15 |
Efficient and accurate large library ligand docking with KarmaDock
2023-09, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00511-5
PMID:38177786
|
研究论文 | 提出了一种用于配体对接的深度学习框架KarmaDock,集成了对接加速、结合姿态生成与校正以及结合强度估计功能 | 首次将E(n)等变图神经网络与自注意力机制结合用于配体对接,同时实现姿态优化和结合强度评估的三阶段模型 | 仅在四个基准数据集和单一真实虚拟筛选项目中验证,需要更广泛的应用场景测试 | 开发高效准确的大规模配体对接方法以改进基于结构的虚拟筛选 | 蛋白质-配体复合物 | 机器学习 | NA | 虚拟筛选 | 图神经网络, 混合密度网络 | 分子结构数据 | 四个基准数据集和一个真实虚拟筛选项目 | NA | E(n) equivariant graph neural networks, self-attention, mixture density network | 对接速度, 姿态质量, 结合亲和力准确性 | NA |
| 26 | 2025-11-15 |
Progress in using deep learning to treat cancer
2023-09, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00514-2
PMID:38177785
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 27 | 2025-11-15 |
Machine-guided path sampling to discover mechanisms of molecular self-organization
2023-04, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00428-z
PMID:38177937
|
研究论文 | 提出一种结合深度学习和过渡路径理论的自主动力学路径采样算法,用于发现分子自组织现象的机制 | 开发了能够自主构建、验证和更新定量机制模型的路径采样算法,通过符号回归将学习机制转化为人类可解释的物理观测量形式 | NA | 探索分子自组织现象的机制发现方法 | 溶液中的离子缔合、天然气水合物晶体形成、聚合物折叠和膜蛋白组装 | 机器学习 | NA | 深度学习, 过渡路径理论, 符号回归 | 深度学习模型 | 分子动力学轨迹数据 | NA | NA | NA | NA | NA |
| 28 | 2025-11-15 |
Deep learning to estimate brain age
2023-01, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00398-2
PMID:38177962
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 29 | 2025-11-14 |
Discovering small-molecule senolytics with deep neural networks
2023-06, Nature aging
IF:17.0Q1
DOI:10.1038/s43587-023-00415-z
PMID:37142829
|
研究论文 | 利用图神经网络筛选具有抗衰老细胞活性的小分子化合物 | 首次将图神经网络应用于大规模筛选抗衰老化合物,发现结构多样且具有更优药物化学性质的新候选分子 | 研究基于etoposide诱导的衰老模型,在其他衰老模型中的普适性需进一步验证 | 开发新型抗衰老药物(senolytics)以清除衰老细胞 | 衰老细胞和小分子化合物 | 机器学习 | 老年疾病 | 分子对接模拟,时间分辨荧光能量转移实验 | 图神经网络 | 化学分子结构数据 | 2,352个初筛化合物,800,000+个预测分子 | NA | 图神经网络 | 选择性,药物化学性质,分子对接评分 | NA |
| 30 | 2025-11-12 |
Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning
2023-Dec-10, The Science of the total environment
DOI:10.1016/j.scitotenv.2023.166168
PMID:37586538
|
研究论文 | 本研究使用深度学习从街景图像评估空气污染和噪声的时空分布 | 首次系统评估基于图像的污染模型在时空维度上的泛化能力,特别是在基础设施有限的中低收入国家 | 模型在未见过的地点表现下降,需要与传统传感器网络集成以提高鲁棒性 | 开发能够从街景图像推断细颗粒物和噪声水平的时空可泛化模型 | 加纳阿克拉市的空气污染(PM)和噪声水平 | 计算机视觉 | NA | 街景图像分析 | CNN | 图像 | 超过160万张图像,在145个代表性地点收集,持续15个月 | NA | 卷积神经网络 | 准确率 | NA |
| 31 | 2025-11-12 |
Phenotyping urban built and natural environments with high-resolution satellite images and unsupervised deep learning
2023-Oct-01, The Science of the total environment
DOI:10.1016/j.scitotenv.2023.164794
PMID:37315611
|
研究论文 | 提出一种无监督深度聚类方法,利用高分辨率卫星图像对城市建成和自然环境进行表型分类 | 开发新型无监督深度聚类方法,仅通过卫星图像即可捕捉城市环境的多维特征,无需传统环境与人口数据 | 基于组合特征的聚类结果对空间尺度和聚类数量选择敏感 | 实现城市建成和自然环境的实时监测与可持续发展追踪 | 加纳阿克拉市的高分辨率卫星图像(0.3米/像素) | 计算机视觉 | NA | 卫星遥感成像 | 无监督深度学习 | 卫星图像 | 加纳阿克拉市全域高分辨率卫星图像 | NA | 深度聚类 | 聚类稳健性, 可解释性 | NA |
| 32 | 2025-11-12 |
Do poverty and wealth look the same the world over? A comparative study of 12 cities from five high-income countries using street images
2023, EPJ data science
IF:3.0Q1
DOI:10.1140/epjds/s13688-023-00394-6
PMID:37293269
|
研究论文 | 利用街景图像和深度学习比较五个高收入国家12个城市中贫困与富裕社区视觉特征的相似性 | 首次通过跨城市跨国比较分析揭示贫困社区视觉特征比富裕社区更具城市独特性 | 研究仅涵盖高收入国家城市,未包括中低收入国家城市 | 探究不同城市和国家间贫困与富裕社区视觉环境的相似程度 | 12个高收入城市的社区街景图像 | 计算机视觉 | NA | 街景图像分析 | 深度学习 | 图像 | 720万张街景图像,覆盖12个城市8500万人口 | NA | NA | NA | NA |
| 33 | 2025-11-12 |
Convolutional Neural Network Models Combined with Kansei Engineering in Product Design
2023, Computational intelligence and neuroscience
DOI:10.1155/2023/2572071
PMID:36864929
|
研究论文 | 本研究结合卷积神经网络与感性工学,提出了一种能够满足用户感知需求的产品设计方法 | 首次将CNN模型与感性工学理论相结合,建立了产品设计的感知评价系统,提升了产品设计感知信息的逻辑深度 | 仅以电子秤作为研究案例,缺乏对其他产品类型的验证 | 开发能够满足用户感知需求的产品设计方法,提升产品市场竞争力 | 产品设计造型,特别是电子秤的外观设计 | 计算机视觉 | NA | 图像识别 | CNN | 图像 | NA | NA | 卷积神经网络 | NA | NA |
| 34 | 2025-11-06 |
Categorization of collagen type I and II blend hydrogel using multipolarization SHG imaging with ResNet regression
2023-11-09, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-46417-0
PMID:37945626
|
研究论文 | 本研究提出基于多偏振二次谐波成像和ResNet回归的胶原I型和II型混合水凝胶分类方法 | 首次将ResNet深度学习模型应用于多偏振SHG图像分析,无需传统耗时的数学模型拟合过程 | 模型训练依赖于特定偏振角度(10°间隔)的图像采集,可能限制其通用性 | 开发自动化的胶原混合水凝胶分类和回归分析方法 | 胶原I型和II型混合水凝胶(0%, 25%, 50%, 75%, 100% II型) | 计算机视觉 | NA | 多偏振二次谐波成像(SHG) | CNN | 图像 | 5种混合比例的水凝胶,每种采集18张偏振图像 | NA | ResNet | 平均绝对误差(MAE) | NA |
| 35 | 2025-11-05 |
A Systematic Review: Do the Use of Machine Learning, Deep Learning, and Artificial Intelligence Improve Patient Outcomes in Acute Myocardial Ischemia Compared to Clinician-Only Approaches?
2023-Aug, Cureus
DOI:10.7759/cureus.43003
PMID:37674942
|
系统性综述 | 通过系统性文献回顾评估机器学习、深度学习和人工智能在急性心肌缺血中相比纯临床方法对患者结局的改善效果 | 首次系统性比较AI算法结合临床医生与纯临床方法在急性心肌缺血诊疗中的效果差异 | 仅纳入8篇文献进行深入分析,算法透明度不足和伦理问题尚未解决 | 评估AI/ML/DL在急性冠脉综合征早期检测和干预中的应用效果 | 急性心肌缺血患者的心电图数据和临床信息 | 机器学习 | 心血管疾病 | 心电图分析 | 机器学习,深度学习,人工智能算法 | 心电图数据,患者临床信息 | 181篇文献(2013-2023年),其中8篇深入分析 | NA | NA | 灵敏度,特异性,准确度 | NA |
| 36 | 2025-10-30 |
Deep Learning System Outperforms Clinicians in Identifying Optic Disc Abnormalities
2023-Jun-01, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
IF:2.0Q2
DOI:10.1097/WNO.0000000000001800
PMID:36719740
|
研究论文 | 开发了一种基于深度学习的人工智能系统(BONSAI-DLS),用于通过眼底照片检测视盘异常,并在性能上超越临床医生 | 首次开发出能够准确检测视盘异常(包括视乳头水肿)的深度学习系统,并在多中心研究中证明其性能优于一线临床医生 | 使用回顾性收集的便利样本,可能限制结果的泛化性 | 评估深度学习系统在识别视盘异常方面的诊断性能,并与不同专业背景的临床医生进行比较 | 454名患者的800张眼底照片,包括正常视盘、视乳头水肿和其他异常 | 计算机视觉 | 眼科疾病 | 数字眼底摄影 | 深度学习系统 | 图像 | 训练集14,341张眼底照片,测试集800张眼底照片(来自454名患者) | NA | NA | AUC, 错误率, 准确率, 敏感性, 特异性 | NA |
| 37 | 2025-10-27 |
Motivation for using data-driven algorithms in research: A review of machine learning solutions for image analysis of micrographs in neuroscience
2023-06-20, Journal of neuropathology and experimental neurology
IF:3.2Q2
DOI:10.1093/jnen/nlad040
PMID:37244652
|
综述 | 回顾机器学习在神经科学显微图像分析中的应用,探讨其潜力与局限性 | 系统梳理深度学习在神经科学显微图像分析中的最新进展,并提供实际研究项目中的框架选择指导 | 未经验证的新算法可能存在的技术门槛和适用性问题 | 探讨机器学习在神经科学图像分析中的应用价值与实施策略 | 神经科学领域的显微图像数据 | 计算机视觉 | NA | 显微图像分析 | 深度学习 | 显微图像 | NA | NA | NA | NA | NA |
| 38 | 2025-10-23 |
Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns
2023-10, The Journal of arthroplasty
IF:3.4Q1
DOI:10.1016/j.arth.2022.12.013
PMID:36535448
|
研究论文 | 本研究应用生成对抗网络创建高保真合成骨盆X光片,以解决深度学习模型训练中的患者隐私问题 | 首次使用GAN生成难以被专家和计算机识别的合成骨盆X光片,实现跨机构数据共享且不侵犯患者隐私 | 研究仅聚焦于前后位骨盆X光片,未涵盖其他投照角度或影像模态 | 开发能够生成高质量合成医学影像的方法,促进深度学习模型发展同时保护患者隐私 | 骨盆前后位X光片 | 计算机视觉 | 骨科疾病 | X射线成像 | GAN | 图像 | 37,640张真实X光片(来自16,782名患者),通过数据增强生成2,500万张训练图像 | NA | GAN | 准确率, Kappa系数 | NA |
| 39 | 2025-10-21 |
MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data
2023-10, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2023.102926
PMID:37595405
|
研究论文 | 提出一种用于多扫描仪神经影像数据的监督深度学习协调方法MISPEL | 提出可自然扩展到两个以上扫描仪的多扫描仪协调方法,并设计了一套评估扫描仪相关技术变异性和协调技术的标准 | NA | 解决多扫描仪神经影像数据的技术变异性问题,开发数据协调方法 | 多扫描仪神经影像数据 | 神经影像分析 | NA | 3T T1磁共振成像 | 深度学习 | 神经影像数据 | 包含四个扫描仪的多扫描仪匹配数据集 | NA | MISPEL | NA | NA |
| 40 | 2025-10-17 |
Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey
2023-01-04, Life (Basel, Switzerland)
DOI:10.3390/life13010146
PMID:36676093
|
综述 | 本文对基于机器学习和深度学习技术的皮肤病变分析与癌症检测方法进行了全面综述 | 系统整合了皮肤癌检测中的预处理、分割、特征提取、特征选择和分类方法,识别了当前研究面临的挑战 | 由于皮肤病变特征的复杂性和罕见性,现有方法在分析中仍面临一些挑战 | 通过分析现有皮肤癌检测技术,识别研究障碍以帮助未来研究 | 皮肤病变和皮肤癌 | 计算机视觉,机器学习 | 皮肤癌 | NA | 深度学习,机器学习 | 医学图像 | NA | NA | NA | NA | NA |