本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
441 | 2024-11-13 |
Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition
2023-11, Surgical endoscopy
DOI:10.1007/s00464-023-10322-4
PMID:37580578
|
研究论文 | 本文介绍了一种基于边缘计算的实时手术阶段识别系统,用于优化手术流程和视频评估 | 首次将边缘计算应用于手术阶段识别,实现了实时算法应用 | 实时预测的准确率在59.8%到78.2%之间,平均准确率为68.7% | 开发一种实时手术阶段识别系统,以优化手术流程和视频评估 | 机器人腹股沟疝修复手术的阶段识别 | 计算机视觉 | NA | 深度学习 | ResNet-50 | 视频 | 211个机器人腹股沟疝修复手术视频,用于训练和验证模型;10个机器人腹股沟疝修复手术视频,用于实时测试 |
442 | 2024-11-13 |
Structure-Aware Annotation of Leucine-rich Repeat Domains
2023-Nov-01, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.27.562987
PMID:37961157
|
研究论文 | 本文开发了降维方法来注释亮氨酸重复序列域的重复单元,并验证了其在模型植物中的应用 | 利用深度学习预测的蛋白质结构信息改进了现有的基于序列的域注释方法,能够自动检测发夹环和结构异常 | 依赖于深度学习预测的蛋白质结构信息,可能存在预测误差 | 改进蛋白质域注释方法,特别是亮氨酸重复序列域的注释 | 亮氨酸重复序列域及其在模型植物中的应用 | 机器学习 | NA | 深度学习 | NA | 蛋白质结构 | 127个预测的亮氨酸重复序列域结构,并验证了172个手动注释的亮氨酸重复序列域 |
443 | 2024-11-13 |
Deep convolutional neural network for hippocampus segmentation with boundary region refinement
2023-Sep, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-023-02836-9
PMID:37067776
|
研究论文 | 本文提出了一种基于深度学习的海马体分割方法,通过边界区域细化来提高分割精度 | 本文创新性地引入了边界区域细化步骤,显著提高了海马体分割的准确性 | NA | 提高海马体从磁共振脑图像中的分割精度,以促进脑部疾病研究 | 海马体 | 计算机视觉 | NA | 深度学习 | 卷积神经网络 | 图像 | 使用了公开数据集进行验证 |
444 | 2024-11-12 |
Knowledge graph aids comprehensive explanation of drug and chemical toxicity
2023-08, CPT: pharmacometrics & systems pharmacology
DOI:10.1002/psp4.12975
PMID:37475158
|
研究论文 | 本文介绍了一种名为AIDTox的可解释深度学习模型,用于预测和解释药物及化学物质的细胞毒性 | AIDTox模型整合了化学-基因连接、基因-通路注释和通路层次结构的知识图谱,提供了对细胞毒性的全面解释 | NA | 开发一种能够准确预测和解释复杂毒性终点的计算模型 | 药物和化学物质的细胞毒性 | 机器学习 | NA | 深度学习 | 深度学习模型 | 化学-基因连接、基因-通路注释和通路层次结构的知识图谱 | HepG2和HEK293细胞 |
445 | 2024-11-10 |
Automatic segmentation of atrial fibrillation and flutter in single-lead electrocardiograms by self-supervised learning and Transformer architecture
2023-12-22, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocad219
PMID:37949101
|
研究论文 | 本文开发了一种基于Transformer架构和自监督学习的深度学习模型,用于单导联心电图中的房颤和房扑自动分割 | 本文首次将Transformer架构与自监督学习结合,用于单导联心电图中的房颤和房扑分割 | 本文仅在11个公开数据库和24个外部验证样本上进行了验证,未来需在更多临床数据上进行验证 | 开发一种自动检测房颤和房扑的深度学习模型,以预防中风和缓解血流动力学不稳定 | 单导联心电图中的房颤和房扑 | 机器学习 | 心血管疾病 | 自监督学习 | Transformer | 心电图 | 11个公开数据库中的心电图数据,以及24个外部验证样本 |
446 | 2024-11-10 |
Diffusion Models To Predict 3D Late Mechanical Activation From Sparse 2D Cardiac MRIs
2023-Dec, Proceedings of machine learning research
PMID:38525446
|
研究论文 | 本文提出了一种基于形状约束扩散模型从稀疏的2D心脏MRI图像预测3D晚期机械激活(LMA)图的方法 | 本文的创新点在于利用从训练数据中学习到的对象形状作为先验知识,指导3D重建过程,而不是仅仅依赖于图像强度的空间相关性 | NA | 确定心脏再同步治疗中最佳起搏点的关键在于识别左心室心肌的晚期机械激活区域 | 左心室心肌的3D晚期机械激活图 | 计算机视觉 | 心血管疾病 | 深度学习 | 扩散模型 | 图像 | 使用了公开的3D心肌网格数据集进行训练和测试 |
447 | 2024-11-09 |
Fully Bayesian VIB-DeepSSM
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43898-1_34
PMID:39503046
|
研究论文 | 本文提出了一种全贝叶斯变分信息瓶颈深度形状模型(Fully Bayesian VIB-DeepSSM),用于从3D图像中预测解剖结构的形状,并进行不确定性量化 | 本文的创新点在于提出了全贝叶斯变分信息瓶颈框架,结合了具体丢弃和批量集成两种可扩展实现方法,并通过多模态边缘化进一步增强了不确定性校准 | NA | 本文的研究目的是改进从3D图像中预测解剖结构形状的不确定性量化方法 | 本文的研究对象是解剖结构的形状预测和不确定性量化 | 计算机视觉 | NA | 变分信息瓶颈 | 全贝叶斯神经网络 | 3D图像 | 合成形状和左心房数据 |
448 | 2024-11-09 |
A method using deep learning to discover new predictors from left-ventricular mechanical dyssynchrony for CRT response
2023-02, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
IF:3.0Q2
DOI:10.1007/s12350-022-03067-5
PMID:35915327
|
研究论文 | 本研究利用深度学习技术从左心室机械不同步性的极坐标图中发现新的预测因子,以帮助选择可能对心脏再同步治疗有高反应的心衰患者 | 本研究首次使用自编码器技术从左心室机械不同步性的极坐标图中提取新的预测因子,并在外部验证中显示出良好的预测价值 | 本研究样本量较小,且仅在一个外部验证集中进行了验证,需要进一步的大规模多中心研究来验证其普适性 | 发现新的预测因子以提高心脏再同步治疗反应的预测准确性 | 左心室机械不同步性的极坐标图和心脏再同步治疗反应 | 机器学习 | 心血管疾病 | 自编码器技术 | 自编码器 | 图像 | 157名接受静息门控单光子发射计算机断层扫描心肌灌注成像的患者 |
449 | 2024-11-08 |
Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43996-4_24
PMID:38515783
|
研究论文 | 本文提出了一种使用弱监督多任务深度学习在术中CT图像中检测耳蜗植入电极折叠的方法 | 本文创新性地使用合成数据集训练了一个多任务3D-UNet模型,用于检测耳蜗植入电极的折叠情况 | 本文仅在合成数据集和少量真实数据上进行了验证,未来需要在更大规模的真实数据上进行进一步验证 | 开发一种自动检测耳蜗植入电极折叠的方法,以减少手术风险和提高听力恢复效果 | 耳蜗植入电极的折叠情况 | 计算机视觉 | NA | 弱监督学习 | 3D-UNet | CT图像 | 训练数据包括合成数据集,测试数据包括7个折叠电极和200个非折叠电极的真实术后CT图像 |
450 | 2024-11-08 |
Can point cloud networks learn statistical shape models of anatomies?
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43907-0_47
PMID:39498296
|
研究论文 | 本文探讨了点云网络在统计形状建模(SSM)中的应用 | 首次探索了点云深度学习在SSM中的应用,展示了现有点云编码器-解码器网络在捕捉形状统计表示方面的潜力 | 讨论了现有技术在SSM应用中的局限性,并提出了未来改进的方向 | 研究点云网络在统计形状建模中的潜力 | 点云深度学习在SSM中的应用 | 计算机视觉 | NA | 点云深度学习 | 点云编码器-解码器网络 | 点云 | NA |
451 | 2024-11-07 |
Predicting early breast cancer recurrence from histopathological images in the Carolina Breast Cancer Study
2023-Nov-11, NPJ breast cancer
IF:6.5Q1
DOI:10.1038/s41523-023-00597-0
PMID:37952058
|
研究论文 | 本文评估了基于深度学习的图像分析方法在预测早期乳腺癌复发中的应用 | 利用深度学习从组织病理学图像中提取信息,提供了一种新的早期乳腺癌复发预测方法 | 预测准确率为62.4%,略低于肿瘤分级和ER状态的预测准确率 | 开发一种快速识别高风险早期乳腺癌复发患者的方法 | 来自卡罗莱纳乳腺癌研究的202名患者的704张1毫米肿瘤核心H&E染色图像 | 数字病理学 | 乳腺癌 | 深度学习 | 深度学习模型 | 图像 | 202名患者,其中101名复发,101名未复发,每名患者2-4个核心样本 |
452 | 2024-11-07 |
Novel Muscle Sensing by Radiomyography (RMG) and Its Application to Hand Gesture Recognition
2023-Sep, IEEE sensors journal
IF:4.3Q2
DOI:10.1109/jsen.2023.3294329
PMID:38510062
|
研究论文 | 本文提出了一种新的肌肉感应技术——放射肌电图(RMG),并将其应用于手势识别 | RMG技术能够连续监测肌肉活动,捕捉浅层和深层肌肉群,并可实现可穿戴或无接触式监测 | NA | 开发一种新的肌肉感应技术并验证其在手势识别中的应用 | 手势识别、眼部和腿部肌肉监测 | 计算机视觉 | NA | 放射肌电图(RMG) | 视觉变换器(ViT) | 时间-频率谱图 | 8名受试者 |
453 | 2024-11-06 |
Tailored multi-organ segmentation with model adaptation and ensemble
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107467
PMID:37725849
|
研究论文 | 本文提出了一种结合现成的单器官分割模型来开发多器官分割模型的新方法,以减少对多器官标注数据的依赖 | 本文提出了一种双阶段方法,包括模型适应阶段和模型集成阶段,以提高现成单器官分割模型在目标域上的泛化能力,并从多个适应后的单器官分割模型中提取和整合知识 | NA | 解决多器官分割任务中标注数据不足的问题 | 多器官分割模型 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 四个腹部数据集 |
454 | 2024-11-06 |
A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107485
PMID:37742419
|
研究论文 | 本文介绍了一种用于监测和评估家庭远程无监督条件下康复训练的深度学习系统 | 该系统能够实时评估康复训练,提供精确的执行偏差分析,并结合了运动范围分类和代偿模式识别 | NA | 开发和验证一种经济可行的系统,用于监测和评估康复训练 | 康复训练中的运动范围和代偿模式 | 机器学习 | NA | 深度学习 | NA | 运动数据 | 6种阻力训练数据集 |
455 | 2024-11-06 |
Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107529
PMID:37748220
|
研究论文 | 本文提出了一种新的深度学习方法ICCPred,用于从蛋白质复合物的氨基酸序列中推断链间接触 | 该方法结合了预训练的语言模型和多视角的多序列比对,显著提高了链间接触预测的准确性 | NA | 提高蛋白质复合物链间接触预测的准确性 | 蛋白质复合物的链间接触 | 机器学习 | NA | 深度残差网络 | 深度残差网络 | 氨基酸序列 | 709个非冗余基准蛋白质复合物 |
456 | 2024-11-06 |
PKDN: Prior Knowledge Distillation Network for bronchoscopy diagnosis
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107486
PMID:37757599
|
研究论文 | 本文提出了一种用于支气管镜诊断的先验知识蒸馏网络(PKDN),通过提取病变图像的颜色和边缘特征,并结合动态空间注意模块和门控通道注意模块,增强特征提取能力,最终通过解耦蒸馏平衡目标和非目标类的重要性,提高诊断性能 | 本文的创新点在于引入了先验知识指导模块,提取病变图像的颜色和边缘特征,并结合动态空间注意模块和门控通道注意模块,增强特征提取能力,同时通过解耦蒸馏平衡目标和非目标类的重要性 | 本文的局限性在于仅在哈尔滨医科大学附属肿瘤医院的支气管镜数据集上进行了验证,未来需要在更多不同来源的数据集上进行验证以增强模型的泛化能力 | 本文的研究目的是提高基于深度学习的支气管镜图像诊断系统的准确性和效率,辅助医生进行肺部疾病的诊断 | 本文的研究对象是支气管镜图像中的肺部疾病诊断 | 计算机视觉 | 肺部疾病 | 深度学习 | 先验知识蒸馏网络(PKDN) | 图像 | 2029张支气管镜图像,来自200名患者 |
457 | 2024-11-06 |
Enhancing gland segmentation in colon histology images using an instance-aware diffusion model
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107527
PMID:37778210
|
研究论文 | 本文提出了一种基于扩散模型的实例分割方法,用于自动分割结肠组织学图像中的腺体 | 本文创新性地将扩散模型应用于结肠组织学图像的腺体实例分割,并结合实例感知滤波器和多尺度掩码分支来恢复去噪过程中丢失的细节,同时使用条件编码增强中间特征以提高目标与背景的区分度 | NA | 开发一种自动分割结肠组织学图像中腺体实例的方法,以辅助结肠癌的分级诊断 | 结肠组织学图像中的腺体 | 计算机视觉 | 结肠癌 | 扩散模型 | 扩散模型 | 图像 | 使用了2015 MICCAI Gland Segmentation挑战赛数据集(165张图像)、Colorectal Adenocarcinoma Glands数据集(213张图像)和RINGS数据集(1500张图像) |
458 | 2024-11-06 |
A Global and Local Feature fused CNN architecture for the sEMG-based hand gesture recognition
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107497
PMID:37783073
|
研究论文 | 提出了一种全局和局部特征融合的CNN架构,用于基于sEMG信号的手势识别 | 提出的GLF-CNN模型能够同时提取sEMG信号的全局和局部特征,从而提高手势识别的性能和稳定性 | NA | 改进基于sEMG信号的手势识别模型的性能 | sEMG信号 | 机器学习 | NA | CNN | GLF-CNN | 信号 | 五个基准数据库,包括NinaPro DB4、NinaPro DB5、BioPatRec DB1-DB3和Mendeley Data |
459 | 2024-11-06 |
Cross-domain mechanism for few-shot object detection on Urine Sediment Image
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107487
PMID:37801918
|
研究论文 | 本文提出了一种跨域机制,用于在尿沉渣图像上进行少样本目标检测 | 本文提出了背景抑制注意力(BSA)和特征空间微调模块(FSF),以减少背景信息的影响并调整特征分布,从而提高检测性能 | 本文未详细讨论该方法在其他医学图像数据集上的适用性 | 旨在解决医学图像领域中少样本目标检测的问题 | 尿沉渣图像中的目标检测 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 使用了VOC、COCO数据集以及UriSed2K医学图像数据集进行实验 |
460 | 2024-11-06 |
Limit and screen sequences with high degree of secondary structures in DNA storage by deep learning method
2023-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2023.107548
PMID:37801922
|
研究论文 | 本文研究了如何通过深度学习方法筛选和限制DNA存储中具有高二级结构的序列 | 提出了一种基于双向长短期记忆网络(BiLSTM)和注意力机制的深度学习模型,用于预测DNA序列的自由能,从而筛选出具有高二级结构的序列 | 仅在模拟实验和真实数据集上进行了验证,尚未在大规模实际应用中进行测试 | 研究如何减少DNA存储中高二级结构序列对信息写入和读取的干扰 | DNA序列的二级结构及其对DNA存储的影响 | 机器学习 | NA | 深度学习 | BiLSTM | 序列 | 在模拟实验中使用了随机生成的DNA序列,并在真实数据集中筛选了94个预测自由能中的70个 |