深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 1952 篇文献,本页显示第 41 - 60 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
41 2024-08-07
Deep Learning on Electrocardiograms for Prediction of In-hospital Intradialytic Hypotension in Patients with ESKD
2023-09-01, Kidney360 IF:3.2Q1
NA NA NA NA NA NA NA NA NA NA NA NA
42 2025-03-14
Deep Learning for Automated Measurement of Patellofemoral Anatomic Landmarks
2023-Jul-08, Bioengineering (Basel, Switzerland)
研究论文 本文应用深度学习技术自动测量膝关节解剖标志,以更好地理解解剖结构,从而改善治疗效果 首次开发了一个深度学习回归模型,用于自动标注髌股关节解剖标志,并在生理和病理CT影像上进行大规模训练 健康队列的沟角测量存在统计学显著差异 通过深度学习自动测量膝关节解剖标志,以改善对髌股关节解剖结构的理解 483名患者的膝关节CT影像,包括计划进行膝关节置换的患者和健康膝关节解剖的患者 计算机视觉 膝关节疾病 深度学习 修改后的ResNet50架构 CT影像 483名患者的14,652张图像
43 2025-03-12
Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data
2023-Dec-18, bioRxiv : the preprint server for biology
研究论文 本研究评估了六种脑电图(EEG)数据增强方法在深度学习用于重度抑郁症诊断中的效用 引入了一个新的基线模型,该模型在重复训练数据上进行训练,以消除由于比较不同大小训练集性能而引入的偏差 研究结果仅限于特定的数据集和模型,可能不适用于其他情况 评估数据增强方法在深度学习用于重度抑郁症诊断中的效用 重度抑郁症患者 机器学习 重度抑郁症 EEG数据增强 深度学习模型 原始脑电图数据 未明确说明样本数量
44 2025-03-12
Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients
2023-05, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography IF:5.4Q1
研究论文 本文介绍了EchoNet-Peds,一种基于视频的深度学习算法,用于自动评估儿科患者的左心室射血分数(EF) EchoNet-Peds是首个专门针对儿科患者开发的深度学习算法,能够匹配人类专家在左心室分割和射血分数评估方面的表现 尽管EchoNet-Peds在儿科数据上表现优异,但其在成人数据上的适用性尚未验证 开发一种自动化工具,用于准确评估儿科患者的左心室射血分数和识别收缩功能障碍 儿科患者的超声心动图数据 计算机视觉 心血管疾病 深度学习 CNN 视频 4,467个儿科超声心动图
45 2025-03-11
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
46 2025-03-11
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
47 2025-03-10
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
2023-Oct-17, ArXiv
PMID:37904746
研究论文 本文通过对称纤维化方法简化了细菌的基因调控网络,保留了信息流并突出了网络的计算能力 使用对称纤维化方法简化复杂的生物系统,揭示细菌基因调控网络的计算核心 NA 研究细菌基因调控网络的计算能力和信息传递机制 细菌的基因调控网络 生物信息学 NA 对称纤维化方法 NA 基因调控网络数据 NA
48 2025-03-10
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
2023-04, Digestive diseases and sciences IF:2.5Q2
研究论文 本文评估并验证了基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 结合深度学习特征和临床预测因子建立了一个nomogram,显著提高了淋巴结转移预测的准确性 研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 评估和验证基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 胃癌患者 计算机视觉 胃癌 计算机断层扫描(CT) ResNet50, 随机森林(RF) 图像 347名患者(训练队列:242,测试队列:105)
49 2025-03-09
MRI-Based Deep Learning Method for Classification of IDH Mutation Status
2023-Sep-05, Bioengineering (Basel, Switzerland)
研究论文 本研究旨在开发基于T2加权MRI图像的深度学习网络,用于非侵入性IDH突变状态分类,并与多对比网络进行比较 开发了仅使用T2加权图像的深度学习网络(T2-net)和多对比网络(MC-net),并在超过1100个样本上进行了测试,这是迄今为止最大的基于图像的IDH分类研究 NA 开发用于IDH突变状态分类的深度学习算法 胶质瘤患者的MRI图像和基因组数据 计算机视觉 胶质瘤 MRI 深度学习网络(T2-net和MC-net) 图像 超过1100个样本,包括来自多个数据库的病例
50 2025-03-05
Towards Automatic Cartilage Quantification in Clinical Trials - Continuing from the 2019 IWOAI Knee Segmentation Challenge
2023-Mar, Osteoarthritis imaging
研究论文 本文评估了参与2019年IWOAI膝关节软骨分割挑战赛的六支团队的深度学习分割方法在纵向临床试验中量化软骨损失的适用性 研究展示了最先进的深度学习分割方法在标准化纵向单扫描仪临床试验中用于明确软骨分区的潜力 深度学习方法在股骨分区的标准化响应均值较低,可能是由于后处理中简单的子分区提取所致 评估深度学习分割方法在量化软骨损失中的适用性 来自骨关节炎倡议研究的556名受试者的1130个膝关节MRI扫描 数字病理学 骨关节炎 深度学习 深度学习分割方法 MRI图像 556名受试者的1130个膝关节MRI扫描
51 2025-03-03
Few-shot learning using explainable Siamese twin network for the automated classification of blood cells
2023-Jun, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了一种基于对比学习的Siamese twin network (STN)模型,用于从少量图像中训练并自动分类健康的外周血细胞 使用EfficientNet-B3作为基础模型,提出了一种新的类激活映射方案,以提高模型的可解释性 模型训练依赖于少量数据,可能影响其泛化能力 开发一种自动化且可解释的血液细胞分类方法 健康的外周血细胞 计算机视觉 NA 对比学习 Siamese twin network (STN), EfficientNet-B3 图像 17,092张公开的细胞组织学图像,其中6%用于STN训练,6%用于少样本验证,88%用于少样本测试
52 2025-03-02
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
2023-12, Health services research IF:3.1Q1
研究论文 开发了一种基于自然语言处理(NLP)的算法,用于从非结构化的电子健康记录(EHR)中识别阿尔茨海默病及相关痴呆(ADRD)患者的健康社会决定因素(SDoH) 开发了一种基于规则的NLP算法,用于识别七个SDoH领域,并与深度学习和正则化逻辑回归方法进行了比较 在住房和药物不安全方面的SDoH识别性能较差 识别ADRD患者的健康社会决定因素(SDoH) 阿尔茨海默病及相关痴呆(ADRD)患者 自然语言处理 老年病 自然语言处理(NLP) 基于规则的NLP算法、深度学习、正则化逻辑回归 文本 1000份医疗记录,来自231名ADRD患者
53 2025-03-02
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
54 2025-03-02
Editorial for "Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor and Multi-disease Study"
2023-10, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
55 2025-03-01
Commentary on "A systematic review on machine learning and deep learning techniques in cancer survival prediction": Validation of survival methods
2023-10, Progress in biophysics and molecular biology
NA NA NA NA NA NA NA NA NA NA NA NA
56 2025-03-01
A deep learning-based electrocardiogram risk score for long term cardiovascular death and disease
2023-Sep-12, NPJ digital medicine IF:12.4Q1
研究论文 本文介绍了一种基于深度学习的静息心电图风险评分系统SEER,用于预测长期心血管死亡和疾病风险 开发了SEER,一种基于深度卷积神经网络的模型,仅通过静息心电图即可准确预测长期心血管死亡和疾病风险 研究主要基于斯坦福大学医学中心的数据,虽然在其他两个医疗中心进行了独立评估,但可能仍需更多样化的数据集验证其普适性 探索静息心电图在长期心血管风险评估中的应用,并开发一种新的风险评估工具 静息心电图数据 机器学习 心血管疾病 深度卷积神经网络 CNN 心电图数据 斯坦福大学医学中心收集的大量静息12导联心电图数据,并在Cedars-Sinai医疗中心和哥伦比亚大学欧文医学中心进行了独立评估
57 2025-03-01
Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms
2023-05, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography IF:5.4Q1
研究论文 本研究利用深度学习模型,通过经胸超声心动图(TTE)视频预测冠状动脉钙化(CAC)评分,并评估其在预测1年生存率方面的效果 首次使用基于视频的卷积神经网络(CNN)从TTE视频中预测CAC评分,并验证其在外部数据集上的有效性 研究样本量相对较小,外部验证数据集仅有92个TTE视频 探索TTE视频是否可用于预测冠状动脉钙化评分,并评估其与CT CAC评分在预测1年生存率方面的相似性 2,881个TTE视频与冠状动脉钙化CT配对的样本,以及92个外部验证TTE视频 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 2,881个TTE视频与CT配对的样本,以及92个外部验证TTE视频
58 2025-02-28
DeepOmicsAE: Representing Signaling Modules in Alzheimer's Disease with Deep Learning Analysis of Proteomics, Metabolomics, and Clinical Data
2023-12-15, Journal of visualized experiments : JoVE
NA NA NA NA NA NA NA NA NA NA NA NA
59 2025-02-28
Artificial Intelligence-based System for Detecting Attention Levels in Students
2023-12-15, Journal of visualized experiments : JoVE
研究论文 本文提出了一种基于人工智能的系统,用于检测学生的注意力水平,通过分析学生的情绪、视线方向、身体姿势和生物特征数据来帮助教师优化教学过程 创新点在于整合多种数据源(如情绪、视线、姿势和生物特征数据)来训练AI系统,以自动识别学生的注意力水平,并提出创建标注数据集和注意力分类器的方案 整合不同类型的数据具有挑战性,需要创建标注数据集,且依赖专家输入和现有研究进行准确标注 研究目标是利用AI技术自动检测学生的注意力水平,以帮助教师调整教学策略,优化教学效果 研究对象是课堂中的学生 机器学习 NA 深度学习 NA 图像、生物特征数据 未明确提及样本数量
60 2025-02-27
Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey
2023-Jan-04, Life (Basel, Switzerland)
综述 本文对基于机器学习和深度学习技术的皮肤病变分析和癌症检测方法进行了全面调查 提供了迄今为止应用于皮肤病变检查的方法、技术和方法的广泛文献综述,包括预处理、分割、特征提取、选择和分类方法 由于复杂和罕见的特征,皮肤病变分析仍存在一些挑战 调查现有技术用于皮肤癌发现,找出障碍以帮助研究人员贡献于未来研究 皮肤病变和皮肤癌 计算机视觉 皮肤癌 深度学习和机器学习 NA 图像 NA
回到顶部