本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41 | 2025-05-08 |
Genome-wide association analysis of left ventricular imaging-derived phenotypes identifies 72 risk loci and yields genetic insights into hypertrophic cardiomyopathy
2023-11-30, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43771-5
PMID:38036550
|
研究论文 | 通过全基因组关联分析左心室成像衍生表型,识别了72个风险位点,并为肥厚型心肌病的遗传基础提供了新见解 | 开发了一种新的深度学习算法来准确计算左心室区域壁厚,并首次在全基因组范围内鉴定了72个与左心室区域壁厚相关的遗传位点 | 研究样本主要来自UK Biobank,可能限制了结果的普遍性 | 识别影响左心室区域壁厚的特定遗传因素,并探索其与肥厚型心肌病的因果关系 | 42,194名来自UK Biobank的个体 | 基因组学 | 心血管疾病 | 心脏磁共振成像(CMR), 深度学习, 全基因组关联研究(GWAS), 孟德尔随机化分析 | 深度学习算法 | 影像数据 | 42,194名个体 |
42 | 2025-05-08 |
TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records
2023-11-29, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43715-z
PMID:38030638
|
研究论文 | 提出了一种基于transformer的编码器-解码器生成模型TransformEHR,用于增强电子健康记录(EHRs)中疾病结果的预测 | 采用新的预训练目标——预测患者未来就诊的所有疾病和结果,结合编码器-解码器框架,实现了在多个临床预测任务上的最新性能 | NA | 提升电子健康记录中疾病结果的预测性能 | 电子健康记录(EHRs) | 自然语言处理 | 胰腺癌、创伤后应激障碍 | transformer-based encoder-decoder generative model | transformer | 电子健康记录(EHRs) | NA |
43 | 2025-05-08 |
Label-free identification of protein aggregates using deep learning
2023-11-28, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43440-7
PMID:38016971
|
research paper | 提出了一种无需荧光标记的蛋白质聚集体识别方法LINA,利用深度学习从透射光图像中检测未标记的Httex1聚集体 | 首次实现了无需荧光标记的蛋白质聚集体动态识别,并能够测量其干质量和面积变化 | 目前仅针对Httex1蛋白聚集体进行了验证,尚未扩展到其他蛋白质聚集体 | 开发一种无需荧光标记的蛋白质聚集体识别方法,以更准确地研究蛋白质聚集动力学 | Huntington病相关Httex1蛋白聚集体 | digital pathology | neurodegenerative diseases | deep learning | CNN | image | 未明确说明样本数量,研究对象为活细胞中的Httex1聚集体 |
44 | 2025-05-08 |
Coding infant engagement in the Face-to-Face Still-Face paradigm using deep neural networks
2023-05, Infant behavior & development
IF:1.9Q3
DOI:10.1016/j.infbeh.2023.101827
PMID:36806017
|
研究论文 | 本研究使用深度神经网络(DNNs)对婴儿在面对面静止面孔(FFSF)任务中的参与度进行编码 | 首次将深度神经网络应用于FFSF任务中婴儿参与度的自动编码,并验证其高准确度 | 研究继承了原始数据集的样本限制,样本量较小且主要为白人群体 | 测试深度神经网络在FFSF任务中编码婴儿参与度的准确性 | 68对母婴组合在三个时间点完成的FFSF任务数据 | 计算机视觉 | NA | 深度神经网络图像分类 | DNN | 视频图像 | 68对母婴组合在三个时间点的FFSF任务视频数据,包含40,000张图像 |
45 | 2025-05-08 |
Cross-convolutional transformer for automated multi-organs segmentation in a variety of medical images
2023-01-23, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acb19a
PMID:36623323
|
research paper | 提出了一种基于跨卷积变换器的深度学习方法,用于多种医学图像中的多器官自动分割 | 设计了新颖的跨卷积自注意力机制和多尺度特征边缘融合模块,以整合局部和全局上下文,增强图像语义特征理解 | 仅在三种不同模态的数据集上进行了验证,可能需要更多样化的数据集来证明其泛化能力 | 开发一种通用的、准确的医学图像多器官分割方法 | 医学图像中的多器官分割 | digital pathology | NA | deep learning | cross-convolutional transformer network (CFormer) | image | 三个不同数据集:Synapse数据集(腹部多器官CT图像)、ACDC数据集(心脏亚结构MRI)、ISIC 2017数据集(皮肤癌图像) |
46 | 2025-05-07 |
Predicting trabecular arrangement in the proximal femur: An artificial neural network approach for varied geometries and load cases
2023-12, Journal of biomechanics
IF:2.4Q3
DOI:10.1016/j.jbiomech.2023.111860
PMID:37948877
|
research paper | 使用前馈神经网络预测股骨近端小梁排列,以几何和载荷参数为输入,输出表观密度 | 采用机器学习方法替代有限元法,显著减少计算时间,同时保持高精度 | 结果需依赖特定数据集,扩展至其他结构需重新获取数据 | 开发高效准确的骨重塑现象预测模型 | 股骨近端小梁排列 | machine learning | NA | feed-forward neural networks | NN | density distribution dataset | 包含多种几何形状和载荷情况的样本 |
47 | 2025-05-04 |
NuFold: A Novel Tertiary RNA Structure Prediction Method Using Deep Learning with Flexible Nucleobase Center Representation
2023-Sep-22, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.20.558715
PMID:37790488
|
研究论文 | 提出了一种名为NuFold的新型深度学习方法,用于预测RNA的三级结构 | NuFold采用了一种灵活的核苷碱基中心表示方法,能够准确再现所有可能的核苷酸构象 | NA | 解决RNA序列数据与结构理解之间的差距,提供一种经济高效的RNA三级结构预测方法 | RNA的三级结构 | 机器学习和计算生物学 | NA | 深度学习 | NuFold | RNA序列数据 | NA |
48 | 2025-05-04 |
Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses
2023-Jul-14, bioRxiv : the preprint server for biology
DOI:10.1101/2023.07.13.548611
PMID:37503003
|
研究论文 | 开发了一种高通量基因标记方法,用于生成和分析内源性标记蛋白的复杂细胞池,以可视化或直接扰动蛋白质 | 结合高通量基因标记、荧光标记、测序和基于深度学习的图像分析,实现了蛋白质定位模式的大规模识别,并通过疏水性配体诱导蛋白质错误折叠,揭示了细胞器间的组织和直接串扰 | NA | 研究蛋白质组的动态、功能和稳态 | 内源性标记蛋白的复杂细胞池 | 蛋白质组学 | NA | 高通量基因标记、HaloTag标记、单细胞RNA测序、深度学习 | 深度学习 | 图像、RNA测序数据 | NA |
49 | 2025-05-03 |
Identification of Drug Compounds for Capsular Contracture Based on Text Mining and Deep Learning
2023-11-01, Plastic and reconstructive surgery
IF:3.2Q1
DOI:10.1097/PRS.0000000000010350
PMID:36862957
|
研究论文 | 通过文本挖掘和深度学习技术识别用于治疗包膜挛缩的药物化合物 | 结合文本挖掘、基因相互作用分析和深度学习模型DeepPurpose,筛选出与包膜挛缩相关的候选药物 | 研究结果尚未经过临床验证,药物有效性有待进一步实验确认 | 探索包膜挛缩的非手术治疗方法 | 与包膜挛缩相关的基因和药物 | 自然语言处理 | 包膜挛缩 | 文本挖掘、蛋白互作分析、深度学习 | DeepPurpose | 文本、基因数据 | 55个相关基因、8个候选基因、100种药物 |
50 | 2025-05-02 |
Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
2023-12-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43749-3
PMID:38092727
|
研究论文 | 利用深度学习对混合型肝细胞-胆管癌进行表型重分类 | 首次应用深度学习对混合型肝细胞-胆管癌进行表型重分类,并与临床结果、基因变异及原位空间基因表达谱一致 | 研究样本量有限,且仅针对cHCC-CCA这一罕见癌症类型 | 改善混合型肝细胞-胆管癌的诊断和治疗决策 | 混合型肝细胞-胆管癌患者 | 数字病理学 | 肝癌 | 深度学习 | 深度学习模型 | 图像和基因表达数据 | 405名cHCC-CCA患者 |
51 | 2025-05-02 |
Automating General Movements Assessment with quantitative deep learning to facilitate early screening of cerebral palsy
2023-12-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-44141-x
PMID:38097602
|
research paper | 本研究提出了一种基于深度学习的运动评估模型(MAM),用于自动化评估婴儿的全身运动,以促进脑瘫的早期筛查 | 结合婴儿视频和基本特征,开发了自动化评估全身运动的深度学习模型,并引入了定量GMA方法,显著提高了诊断准确性 | 需要外部验证以进一步确认模型的泛化能力 | 自动化全身运动评估,促进脑瘫的早期筛查 | 婴儿的全身运动 | digital pathology | cerebral palsy | deep learning | CNN | video | 未明确提及样本数量 |
52 | 2025-05-02 |
Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology
2023-12-13, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43917-5
PMID:38086839
|
research paper | 提出了一种名为scSpaMet的单细胞空间代谢组学框架,用于联合分析人类男性组织中单个免疫细胞和癌细胞的蛋白质-代谢物特征 | 结合了非靶向空间代谢组学和靶向多重蛋白质成像技术,实现了单细胞水平的蛋白质-代谢物联合分析 | 仅针对男性人类组织进行研究,未涉及女性样本 | 开发用于组织系统生物学研究的单细胞空间代谢组学工具 | 人类肺癌、扁桃体和子宫内膜组织中的单个免疫细胞和癌细胞 | digital pathology | lung cancer | untargeted spatial metabolomics, targeted multiplexed protein imaging | deep learning-based joint embedding | spatial metabolomic data, protein imaging data | 19507个肺癌单细胞、31156个扁桃体单细胞和8215个子宫内膜单细胞 |
53 | 2025-05-02 |
High-throughput target trial emulation for Alzheimer's disease drug repurposing with real-world data
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43929-1
PMID:38081829
|
research paper | 该研究通过模拟目标随机试验,利用真实世界数据评估了数千种药物对阿尔茨海默病的潜在再利用价值 | 提出了一个模型选择策略以改进基线协变量平衡,并发现基于深度学习的倾向评分模型在协变量平衡方面不一定优于基于逻辑回归的方法 | 缺乏对模拟试验结果的系统评估 | 识别已批准药物对阿尔茨海默病的新适应症 | 数千种药物和超过1.7亿患者的临床记录 | machine learning | geriatric disease | target trial emulation, inverse probability of treatment weighting | deep learning, logistic regression | clinical records | 超过1.7亿患者的临床记录 |
54 | 2025-05-02 |
Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43172-8
PMID:38081823
|
研究论文 | 介绍了一种基于细胞空间组织的图卷积网络Ceograph,用于分析病理图像中的细胞空间组织特征及其对患者临床结果的影响 | 提出了Ceograph模型,能够识别细胞空间组织特征并预测其对患者临床结果的影响,为个性化治疗策略提供支持 | 未提及具体的数据集规模或模型在不同类型癌症中的泛化能力 | 开发一种能够分析细胞空间组织特征并预测临床结果的方法 | 口腔潜在恶性病变患者和肺癌患者的病理图像 | 数字病理 | 口腔潜在恶性病变, 肺癌 | 图卷积网络 | GCN | 病理图像 | NA |
55 | 2025-05-02 |
DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43909-5
PMID:38081814
|
研究论文 | 开发了一种基于深度学习的保留时间对齐工具DeepRTAlign,用于大规模队列LC-MS数据分析 | 能够同时处理单调和非单调的RT偏移,提高了识别灵敏度而不影响定量准确性 | 未明确提及具体局限性 | 提高大规模队列LC-MS研究中保留时间对齐的准确性 | 蛋白质组学和代谢组学实验中的保留时间对齐 | 质谱数据分析 | 肝细胞癌 | LC-MS | 深度学习 | 质谱数据 | 多个真实世界和模拟的蛋白质组学和代谢组学数据集 |
56 | 2025-05-02 |
The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers
2023-Dec, Psychological methods
IF:7.6Q1
DOI:10.1037/met0000542
PMID:37126041
|
研究论文 | 介绍了一个名为text的R包,用于利用NLP和transformer技术分析和可视化人类语言 | 将最先进的NLP和深度学习技术(如transformer)以用户友好的方式提供给心理学研究者,专门针对人类层面的分析优化 | 未提及具体性能指标或与其他工具的比较 | 为社会科学研究者提供便捷的语言分析工具 | 人类语言数据 | 自然语言处理 | NA | NLP, transformer | transformer | 文本 | NA |
57 | 2025-05-02 |
Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images
2023-Jul-04, Research square
DOI:10.21203/rs.3.rs-2928838/v1
PMID:37461694
|
research paper | 介绍了一种名为Ceograph的新型细胞空间组织图卷积网络,用于分析病理图像中的细胞空间组织特征及其对患者临床结果的影响 | 提出Ceograph模型,首次将细胞空间组织特征与患者临床结果预测相结合,识别出与恶性转化和药物敏感性相关的关键特征 | 研究仅针对口腔潜在恶性病变和肺癌患者,未验证在其他疾病类型中的适用性 | 开发一种能够分析细胞空间组织特征并预测临床结果的计算方法 | 口腔潜在恶性病变患者和肺癌患者的病理图像 | digital pathology | oral potentially malignant disorders, lung cancer | graph convolutional network | GCN | image | NA |
58 | 2025-05-02 |
External Validation of SpineNet, an Open-Source Deep Learning Model for Grading Lumbar Disk Degeneration MRI Features, Using the Northern Finland Birth Cohort 1966
2023-Apr-01, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000004572
PMID:36728678
|
研究论文 | 本研究通过外部验证开源深度学习模型SpineNet在腰椎间盘退变MRI特征分级中的应用 | 首次在独立数据集上验证SpineNet模型对腰椎间盘退变分类的可靠性 | 研究数据仅来自单一出生队列,可能影响模型在其他人群中的泛化能力 | 验证深度学习模型在医学影像分析中的可靠性 | 腰椎间盘退变的MRI影像 | 数字病理 | 脊柱退行性疾病 | MRI影像分析 | 深度学习图像分类模型(SpineNet) | 医学影像 | 1331名NFBC1966队列参与者的腰椎MRI数据 |
59 | 2025-05-02 |
International Importation Risk Estimation of SARS-CoV-2 Omicron Variant with Incomplete Mobility Data
2023, Transboundary and emerging diseases
IF:3.5Q1
DOI:10.1155/2023/5046932
PMID:40303718
|
research paper | 开发了一个基于深度神经网络的模型,用于评估Omicron BQ.1从西非传入其他国家的风险 | 利用不完全的人口流动数据,首次应用深度神经网络模型估计病毒输入风险 | 依赖不完全的人口流动数据,可能影响模型准确性 | 评估Omicron BQ.1从西非传入其他国家的风险 | Omicron BQ.1病毒及其传播风险 | machine learning | COVID-19 | deep neural networks | DNN | population mobility data | 西非到其他非非洲国家的人口流动数据 |
60 | 2025-04-27 |
From the diagnosis of infectious keratitis to discriminating fungal subtypes; a deep learning-based study
2023-12-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-49635-8
PMID:38097753
|
research paper | 本研究利用深度学习技术从传染性角膜炎的诊断到真菌亚型的区分 | 提出三个深度学习模型,分别用于诊断传染性角膜炎、区分细菌性和真菌性角膜炎,以及鉴别真菌亚型(丝状真菌与酵母菌) | 模型在真菌亚型鉴别上的准确率相对较低(77.5%) | 提高传染性角膜炎的早期诊断和分类准确性 | 传染性角膜炎患者 | digital pathology | infectious keratitis | deep learning | CNN | image | 977名患者的9329张裂隙灯照片 |