本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701 | 2024-09-27 |
Retracted: Big Data Analysis of Benign Interaction of Great Power Relations and New International Relations Based on Deep Learning
2023, Journal of environmental and public health
DOI:10.1155/2023/9763601
PMID:37811409
|
correction | 该文章已被撤回 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
702 | 2024-09-27 |
Erratum to "A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification"
2023, BME frontiers
IF:5.0Q1
DOI:10.34133/bmef.0011
PMID:37849679
|
correction | 对文章《一种低成本高性能的深度学习皮肤病变分类数据增强方法》的勘误 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
703 | 2024-09-26 |
Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction
2023-Oct, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09615-y
PMID:37071168
|
研究论文 | 评估一种结合深度学习和最优表面图割方法的自动支气管参数提取方法的可重复性 | 结合深度学习和最优表面图割方法,自动分割气道管腔和壁,并计算支气管参数 | 自动测量方法在第7代及以后的气道中可重复性显著下降 | 评估自动支气管参数提取方法的可重复性 | 支气管参数的自动分割和测量 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | CT扫描图像 | 188名参与者,每人两次CT扫描,平均间隔3个月 |
704 | 2024-09-26 |
Large-scale automatic extraction of agricultural greenhouses based on high-resolution remote sensing and deep learning technologies
2023-Oct, Environmental science and pollution research international
DOI:10.1007/s11356-023-29802-0
PMID:37733202
|
研究论文 | 本文利用高分辨率遥感图像和深度学习技术,自动提取了中国山东省的大规模农业温室分布 | 首次实现了大规模高分辨率(约1米)的农业温室提取,并结合深度学习算法达到了94.04%的平均交并比 | 研究仅限于山东省,未涵盖其他地区 | 获取农业温室的空间分布,为农业生产、政策制定和环境保护提供支持 | 中国山东省的农业温室 | 计算机视觉 | NA | 高分辨率遥感图像 | 深度学习算法 | 图像 | 山东省总面积的1.11%,总耕地面积的2.31%,覆盖面积为1755.3平方公里 |
705 | 2024-09-26 |
Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN
2023-Sep-24, bioRxiv : the preprint server for biology
DOI:10.1101/2023.02.03.526939
PMID:36778387
|
研究论文 | 本文介绍了一种名为SATURN的深度学习方法,用于学习跨物种的通用细胞嵌入,通过结合蛋白质语言模型和RNA表达来整合不同物种的单细胞RNA测序数据集 | SATURN方法能够检测跨物种的功能相关基因共表达,重新定义了跨物种分析的差异表达,并能有效跨物种转移注释和识别同源及物种特异性细胞类型 | NA | 开发一种能够整合跨物种单细胞RNA测序数据集的方法,以揭示细胞类型的进化保守性和多样性 | 跨物种的单细胞RNA测序数据集,包括三种物种的全器官图谱以及蛙和斑马鱼胚胎发育数据集 | 机器学习 | NA | 单细胞RNA测序 | 深度学习 | 基因表达数据 | 涉及三种物种的全器官图谱以及蛙和斑马鱼胚胎发育数据集 |
706 | 2024-09-26 |
Multimodal deep learning approaches for single-cell multi-omics data integration
2023-09-20, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbad313
PMID:37651607
|
review | 本文综述了多模态深度学习技术在单细胞多组学数据整合中的应用 | 首次系统性地研究了深度学习在单细胞多组学数据整合中的应用 | NA | 填补深度学习在单细胞多组学数据整合应用中的研究空白 | 单细胞多组学数据 | machine learning | NA | 多模态深度学习 | NA | multi-omics | NA |
707 | 2024-09-26 |
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study
2023-09-11, Cancer cell
IF:48.8Q1
DOI:10.1016/j.ccell.2023.08.002
PMID:37652006
|
研究论文 | 本文开发了一种基于Transformer的管道,用于从结直肠癌病理切片中进行端到端的生物标志物预测 | 本文提出了一种新的基于Transformer的管道,结合了预训练的Transformer编码器和Transformer网络进行补丁聚合,显著提高了性能、泛化性、数据效率和可解释性 | NA | 加速从常规病理切片中预测结直肠癌的预后生物标志物 | 结直肠癌病理切片中的生物标志物预测 | 数字病理学 | 结直肠癌 | Transformer | Transformer | 图像 | 超过13,000名患者,来自16个结直肠癌队列 |
708 | 2024-09-26 |
Capturing continuous, long timescale behavioral changes in Drosophila melanogaster postural data
2023-Sep-07, ArXiv
PMID:37731659
|
研究论文 | 本文研究了果蝇在长时间尺度上的行为变化,特别是通过连续记录果蝇的姿势数据来捕捉这些变化 | 本文首次使用深度学习框架SLEAP对果蝇的长时间行为进行连续记录和分析,揭示了果蝇行为在不同时间尺度上的变化模式 | 实验仅限于果蝇,且记录时间最长为7天,可能无法完全捕捉到果蝇行为的所有长时间变化 | 研究果蝇在长时间尺度上的行为变化,特别是通过姿势数据来分析这些变化 | 果蝇的行为和姿势数据 | 生物学 | NA | 深度学习 | SLEAP | 姿势数据 | 47只果蝇,记录了近20亿个姿势实例 |
709 | 2024-09-26 |
Poor Generalization by Current Deep Learning Models for Predicting Binding Affinities of Kinase Inhibitors
2023-Sep-06, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.04.556234
PMID:37732243
|
研究论文 | 本文探讨了当前深度学习模型在预测激酶抑制剂结合亲和力方面的泛化能力 | 通过构建卷积神经网络(CNN)并评估其在四个常用数据集上的表现,揭示了模型在处理未见数据时的性能下降问题 | 模型在处理未见数据时性能显著下降,表明存在信息泄露问题,且模型未能学习到分子相互作用的知识 | 评估当前深度学习模型在预测激酶抑制剂结合亲和力方面的泛化能力 | 激酶抑制剂及其与激酶的结合亲和力 | 机器学习 | NA | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 分子序列(SMILES字符串) | 四个常用数据集 |
710 | 2024-09-26 |
Foundation Models for Quantitative Biomarker Discovery in Cancer Imaging
2023-Sep-05, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.09.04.23294952
PMID:37732237
|
研究论文 | 本文开发了一种用于癌症影像生物标志物发现的基石模型,并通过自监督学习训练卷积编码器 | 基石模型在减少下游应用中训练样本需求方面表现出色,特别是在医学领域 | NA | 开发和评估用于影像生物标志物发现的基石模型 | 癌症影像生物标志物 | 计算机视觉 | NA | 自监督学习 | 卷积神经网络(CNN) | 影像 | 11,467个放射性病变样本 |
711 | 2024-09-26 |
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
2023-09, PLoS genetics
IF:4.0Q1
DOI:10.1371/journal.pgen.1010942
PMID:37703293
|
研究论文 | 提出了一种基于图自编码器的深度学习模型DeepRIG,用于从单细胞转录组数据中推断基因调控网络 | DeepRIG模型通过构建先验调控图并利用图自编码器嵌入全局调控信息,能够准确重建基因调控网络并优于现有方法 | NA | 推断单细胞转录组数据中的基因调控网络 | 基因调控网络 | 机器学习 | NA | 单细胞RNA测序 | 图自编码器 | 转录组数据 | 人类外周血单核细胞和三阴性乳腺癌样本 |
712 | 2024-09-26 |
Advancing Naturalistic Affective Science with Deep Learning
2023-Sep, Affective science
IF:2.1Q2
DOI:10.1007/s42761-023-00215-z
PMID:37744976
|
综述 | 本文综述了深度学习在推进自然情感科学中的应用 | 引入深度学习方法来解决传统情感研究中的挑战,如量化自然行为、选择和操纵自然刺激以及建模自然情感过程 | 深度学习方法本身存在局限性,可能需要避免或缓解 | 推进更自然的情感科学研究 | 情感行为的不同渠道,包括面部表情、身体姿势、语音韵律和语言 | 自然语言处理 | NA | 深度学习 | NA | 行为数据 | NA |
713 | 2024-09-26 |
Trends in the application of remote sensing in blue carbon science
2023-Sep, Ecology and evolution
IF:2.3Q2
DOI:10.1002/ece3.10559
PMID:37745789
|
研究论文 | 本文探讨了遥感技术在蓝碳科学中的应用趋势 | 本文通过文献计量分析评估了1990年至2022年6月间发表的2193篇论文,揭示了研究重点随时间的变化 | 需要增加对海草、盐沼和大型藻类的研究,整合技术,增加遥感技术在碳核算方法和信用体系中的应用,并加强国家间的合作和资源共享 | 评估蓝碳生态系统(如红树林、盐沼和海草)的现状、损失和增益,以支持气候政策制定 | 红树林、盐沼、海草等蓝碳生态系统 | 遥感 | NA | 遥感技术,包括光学卫星Landsat、LiDAR、无人机和声学传感器 | 机器学习和深度学习算法 | 遥感图像 | 2193篇已发表的论文 |
714 | 2024-09-26 |
Deep learning-based model detects atrial septal defects from electrocardiography: a cross-sectional multicenter hospital-based study
2023-Sep, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2023.102141
PMID:37753448
|
研究论文 | 本文提出了一种基于卷积神经网络(CNN)的模型,用于从12导联心电图(ECG)中检测房间隔缺损(ASD),并在多中心医院进行横断面研究 | 本文的创新点在于利用深度学习技术,特别是卷积神经网络,从常规的12导联心电图中自动检测房间隔缺损,从而提高诊断的敏感性和特异性 | 本文的局限性在于样本选择可能存在偏倚,且未详细讨论模型的泛化能力在不同人群中的表现 | 本研究旨在通过开发和验证一种基于深度学习的模型,提高房间隔缺损的早期检测和诊断准确性 | 本研究的对象是从三所医院收集的671,201份12导联心电图,涉及80,947名患者 | 机器学习 | 心血管疾病 | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 心电图(ECG) | 671,201份心电图,涉及80,947名患者 |
715 | 2024-09-26 |
Predicting Individual Patient Platelet Demand in a Large Tertiary Care Hospital Using Machine Learning
2023-Aug, Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie
IF:1.9Q4
DOI:10.1159/000528428
PMID:37767277
|
研究论文 | 本文研究了使用机器学习方法预测大型三级医院中单个患者的血小板需求 | 本文首次引入了基于AI的患者个体血小板需求预测方法 | 模型的敏感性表现不佳,需要进一步改进 | 评估多模态数据以预测患者在3天内的血小板输注需求 | 25,190名患者的数据,包括血小板输注数量、血小板计数、药物、急性血小板疾病、手术、年龄、性别和住院时间 | 机器学习 | NA | 机器学习 | NA | 多模态数据 | 25,190名患者(42%女性,58%男性) |
716 | 2024-09-26 |
Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer
2023, Exploration of targeted anti-tumor therapy
DOI:10.37349/etat.2023.00158
PMID:37745691
|
研究论文 | 研究使用深度学习算法对非小细胞肺癌脑转移的表皮生长因子受体和间变性淋巴瘤激酶状态进行分类 | 首次使用卷积神经网络Efficient Net模型对脑转移的EGFR和ALK状态进行分类,并与基于语义特征的分类方法进行比较 | 研究样本量较小,且仅使用了MRI序列数据 | 探讨开发深度学习算法对非小细胞肺癌脑转移的EGFR和ALK状态进行分类的可行性 | 非小细胞肺癌脑转移患者的EGFR和ALK状态 | 计算机视觉 | 肺癌 | MRI | CNN | 图像 | 117名患者,其中33名EGFR阳性,43名ALK阳性,41名无突变 |
717 | 2024-09-26 |
A review on deep learning applications in highly multiplexed tissue imaging data analysis
2023, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2023.1159381
PMID:37564726
|
综述 | 本文综述了深度学习在高度多重组织成像数据分析中的应用及其对肿瘤学的影响 | 本文强调了使用高度多重图像(空间蛋白质组数据)相对于单染色传统病理图像的优势,前者能够提供后者无法获得的深层机制洞察,即使借助可解释的人工智能 | NA | 探讨人工智能与空间组学技术结合在肿瘤学中的影响,特别是深度学习在生物医学图像分析中的应用 | 细胞分割、细胞表型识别、癌症预后和治疗预测 | 计算机视觉 | 肿瘤学 | 深度学习 | NA | 图像 | NA |
718 | 2024-09-26 |
An approach to the diagnosis of lumbar disc herniation using deep learning models
2023, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2023.1247112
PMID:37731760
|
研究论文 | 本文研究了使用深度学习模型在磁共振成像(MRI)中诊断腰椎间盘突出(LDH)的方法 | 本文创新性地使用了YOLOv5、YOLOv6和YOLOv7模型来检测不同腰椎间盘区域的LDH,并比较了不同模型的性能 | 本文未详细讨论模型的泛化能力和在不同数据集上的表现 | 验证YOLO系列模型在MRI图像中检测LDH的有效性 | 腰椎间盘突出的检测 | 计算机视觉 | 腰椎间盘突出 | 深度学习 | YOLOv5, YOLOv6, YOLOv7 | 图像 | 550个数据集,包括增强和非增强数据 |
719 | 2024-09-26 |
A curated census of pathogenic and likely pathogenic UTR variants and evaluation of deep learning models for variant effect prediction
2023, Frontiers in molecular biosciences
IF:3.9Q2
DOI:10.3389/fmolb.2023.1257550
PMID:37745687
|
研究论文 | 本文开发了一个高置信度的致病性和可能致病性UTR变异集,并评估了深度学习模型对变异效应预测的性能 | 本文首次系统地收集和评估了3'和5' UTR的致病性和可能致病性变异,并利用深度学习模型进行预测,验证了这些变异的致病性 | 本文的局限性在于仅使用了ClinVar数据库中的变异数据,可能存在数据偏差 | 评估深度学习模型对UTR变异效应预测的准确性,并提供一个高置信度的致病性和可能致病性UTR变异集 | 3'和5' UTR的致病性和可能致病性变异 | 数字病理学 | 罕见病 | 深度学习 | 深度学习模型 | 序列数据 | 295个3' UTR变异和188个5' UTR变异,其中26个3' UTR变异和68个5' UTR变异被分类为致病性或可能致病性 |
720 | 2024-09-26 |
Low-Latency Active Noise Control Using Attentive Recurrent Network
2023, IEEE/ACM transactions on audio, speech, and language processing
DOI:10.1109/taslp.2023.3244528
PMID:37746522
|
研究论文 | 本文提出了一种使用注意力循环网络(ARN)的低延迟主动噪声控制(ANC)方法 | 引入了延迟补偿训练和改进的重叠相加方法,以减少深度ANC的算法延迟 | NA | 解决主动噪声控制中的低延迟问题 | 主动噪声控制系统 | 机器学习 | NA | 注意力循环网络(ARN) | 循环神经网络(RNN) | 音频信号 | NA |