深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 1820 篇文献,本页显示第 981 - 1000 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
981 2024-09-19
Addressing Deep Learning Model Calibration Using Evidential Neural Networks And Uncertainty-Aware Training
2023-Apr-18, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文探讨了通过证据神经网络和不确定性感知训练来改善深度学习模型校准的方法 本文结合了不确定性感知训练和证据神经网络两种方法,展示了它们在复杂任务中改善模型校准的潜力 实验结果表明,当任务变得足够复杂时,模型校准可能会受到影响,即使使用高容量模型 研究如何通过不确定性感知训练和证据神经网络来改善深度学习模型的校准 MNIST数字分类任务和使用相位对比心脏磁共振图像的复杂医学影像伪影检测任务 计算机视觉 NA 深度学习 证据神经网络 图像 涉及MNIST数据集和相位对比心脏磁共振图像的医学影像伪影检测任务
982 2024-09-19
mEMbrain: an interactive deep learning MATLAB tool for connectomic segmentation on commodity desktops
2023-Apr-17, bioRxiv : the preprint server for biology
研究论文 本文介绍了一个名为mEMbrain的交互式深度学习MATLAB工具,用于在普通台式机上进行连接组分割 提出了mEMbrain工具,集成了多种功能,包括地面真值生成、图像预处理、深度神经网络训练和实时预测,旨在加速手动标注工作并提供半自动实例分割方法 NA 开发一个用户友好的工具,帮助神经科学和图像处理领域的研究人员进行高级分析 电子显微镜(EM)数据集的标注和分割 计算机视觉 NA 深度学习 深度神经网络 图像 涉及4种不同动物和5个数据集,总计约180小时的专家标注,产生超过1.2 GB的标注EM图像
983 2024-09-19
Methods and considerations for estimating parameters in biophysically detailed neural models with simulation based inference
2023-Apr-17, bioRxiv : the preprint server for biology
研究论文 本文探讨了如何使用基于模拟的推断(SBI)方法在生物物理学详细神经模型中估计参数,并提供了相关的指导和考虑因素 提出了使用基于模拟的推断(SBI)方法来克服传统方法中无法访问似然函数的挑战,并利用深度学习进行密度估计 在大规模生物物理学详细模型中应用SBI仍然具有挑战性,尤其是当需要估计时间序列波形参数时 为在生物物理学详细神经模型中应用基于模拟的推断(SBI)方法提供指导和考虑因素 生物物理学详细神经模型中的参数估计 神经科学 NA 基于模拟的推断(SBI) 深度学习 时间序列波形 NA
984 2024-09-19
Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology
2023-Mar-28, NPJ precision oncology IF:6.8Q1
研究论文 本文研究了基于自监督注意力的深度学习方法在泛癌变异预测中的应用 本文提出了一种结合自监督特征提取和基于注意力的多实例学习的分析流程,提高了预测的鲁棒性和泛化能力 文章未提及具体的局限性 研究深度学习方法在病理切片中预测基因突变的泛化能力 研究对象为多种肿瘤类型的病理切片 数字病理学 泛癌 深度学习 基于注意力的多实例学习 图像 涉及两个大型多肿瘤类型数据集
985 2024-09-19
A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning
2023-03-20, Physics in medicine and biology IF:3.3Q1
研究论文 本文研究了使用深度学习增强提示伽马成像在质子治疗中进行范围验证的可行性 提出了一种两层深度学习方法,结合新颖的加权轴投影损失,生成精确的3D提示伽马图像,以实现准确的质子范围验证 本文仅进行了初步研究,尚未在临床环境中验证该方法的有效性 研究深度学习在质子治疗中增强提示伽马成像以进行范围验证的可行性 质子治疗中的提示伽马成像 计算机视觉 NA 深度学习 两层深度学习模型 图像 模拟了54个质子笔束(能量范围:75-125 MeV,剂量水平:1 × 10^10质子/束和3 × 10^10质子/束)
986 2024-09-19
Unassisted Clinicians Versus Deep Learning-Assisted Clinicians in Image-Based Cancer Diagnostics: Systematic Review With Meta-analysis
2023-03-02, Journal of medical Internet research IF:5.8Q1
系统综述与荟萃分析 本文系统地量化了在图像辅助癌症诊断中,临床医生在有无深度学习辅助下的诊断准确性 首次系统地量化了深度学习辅助临床医生在图像辅助癌症诊断中的诊断准确性 研究结果未涵盖临床实践中涉及的所有细节,需要进一步研究以改进深度学习辅助实践 量化临床医生在有无深度学习辅助下的诊断准确性 临床医生在图像辅助癌症诊断中的诊断准确性 机器学习 NA 深度学习 NA 图像 共分析了48项研究,其中25项提供了足够的统计数据进行荟萃分析
987 2024-09-19
Radiomics-Guided Global-Local Transformer for Weakly Supervised Pathology Localization in Chest X-Rays
2023-03, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种基于放射组学的全局-局部Transformer模型,用于胸部X光片中病理定位和分类 创新性地融合了全局图像信息与局部放射组学引导的辅助信息,无需边界框标注即可实现准确的病理定位和分类 NA 开发一种无需边界框标注的病理定位和分类方法 胸部X光片中的病理定位和分类 数字病理学 NA Transformer Transformer 图像 使用了NIH ChestXRay数据集
988 2024-09-19
A fuzzy fine-tuned model for COVID-19 diagnosis
2023-02, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种模糊微调的Xception模型用于COVID-19的自动诊断 使用盲/无参考图像空间质量评估器过滤不适当数据,结合两个数据集进行多类别分类,并采用加权多类别交叉熵减少数据不平衡的影响 未提及具体限制 开发一种准确、易获取且成本低廉的COVID-19诊断方法 COVID-19疾病的自动诊断 计算机视觉 COVID-19 深度学习 Xception 图像 合并了两个数据集,用于区分正常、COVID-19和不同类型的肺炎(细菌性和病毒性)
989 2024-09-19
Non-Destructive Banana Ripeness Detection Using Shallow and Deep Learning: A Systematic Review
2023-Jan-09, Sensors (Basel, Switzerland)
综述 本文综述了使用浅层和深层学习技术进行非破坏性香蕉成熟度检测的研究 本文总结了不同研究中使用的传感器和特征,如颜色,以及卷积神经网络在大数据集上的优越表现 现有研究存在数据集和捕捉设备信息不足、数据可用性有限以及过度使用数据增强技术的问题 自动化和减少人工干预,提高香蕉成熟度检测的准确性 香蕉的成熟度 计算机视觉 NA NA 卷积神经网络 图像 35项研究被纳入最终综述
990 2024-09-19
Interpretable tourism demand forecasting with temporal fusion transformers amid COVID-19
2023, Applied intelligence (Dordrecht, Netherlands)
研究论文 提出了一种创新的ADE-TFT可解释旅游需求预测模型,以解决现有旅游需求预测解释性不足的问题 采用自适应差分进化算法优化Temporal Fusion Transformer参数,结合历史旅游量、月度新增确诊案例和旅游论坛大数据,提高COVID-19期间旅游量预测精度,并使用卷积神经网络分析旅客情绪和话题 NA 提高旅游需求预测的解释性和精度,特别是在COVID-19疫情期间 旅游需求预测模型及其在COVID-19期间的应用 机器学习 NA 自适应差分进化算法、卷积神经网络 Temporal Fusion Transformer、卷积神经网络 文本、时间序列 NA
991 2024-09-19
Deep learning on multi-view sequential data: a survey
2023, Artificial intelligence review IF:10.7Q1
综述 本文综述了深度学习在多视角序列数据上的应用 本文首次系统介绍了多视角序列数据的构成类型和技术挑战,并总结了深度学习技术在该领域的最新进展 本文主要为综述性质,未提出具体的新方法或模型 探讨深度学习在多视角序列数据上的应用及其技术挑战 多视角序列数据及其在不同领域的应用 机器学习 NA 深度学习 NA 多视角序列数据 NA
992 2024-09-19
LWSNet - a novel deep-learning architecture to segregate Covid-19 and pneumonia from x-ray imagery
2023, Multimedia tools and applications IF:3.0Q2
研究论文 本文提出了一种名为LWSNet的新型深度学习架构,用于从X射线图像中区分新冠肺炎、普通肺炎和正常胸部图像 本文的创新点在于提出了一种轻量级堆叠网络(LWSNet),通过单、双、三和四重堆叠机制来解决三分类问题,并在资源受限设备上方便部署 NA 开发一种自动检测肺部疾病的AI工具,以应对全球范围内大量病例的需求,并支持医生工作 新冠肺炎、普通肺炎和正常胸部X射线图像 计算机视觉 新冠肺炎 深度学习 CNN 图像 使用了三个公开数据集及其组合进行评估
993 2024-09-19
A Systematic Review of Using Deep Learning Technology in the Steady-State Visually Evoked Potential-Based Brain-Computer Interface Applications: Current Trends and Future Trust Methodology
2023, International journal of telemedicine and applications IF:3.1Q2
综述 本文通过系统综述评估了深度学习技术在基于稳态视觉诱发电位(SSVEP)的脑-机接口(BCI)应用中的重要性 提出了一个信任提案解决方案,包含三个方法论阶段,用于评估和基准测试基于SSVEP的BCI应用 本文主要关注于综述和分析现有研究,未提出新的实验或模型 评估深度学习技术在基于SSVEP的BCI应用中的现状和未来发展趋势 基于SSVEP的BCI应用中的深度学习方法 机器学习 NA 深度学习 卷积神经网络(CNN)、循环神经网络(RNN)、深度神经网络(DNN)、长短期记忆(LSTM)、受限玻尔兹曼机(RBM) 稳态视觉诱发电位(SSVEP)数据 30篇相关文献
994 2024-09-19
Combination of multi-modal MRI radiomics and liquid biopsy technique for preoperatively non-invasive diagnosis of glioma based on deep learning: protocol for a double-center, ambispective, diagnostical observational study
2023, Frontiers in molecular neuroscience IF:3.5Q2
研究论文 本研究旨在利用多模态MRI放射组学和液体活检技术,基于深度学习构建一种新型的多任务放射组学模型,实现胶质瘤的术前无创“综合诊断” 首次将放射组学与液体活检技术结合用于胶质瘤诊断,探索了深度学习模型结合液体活检参数是否能提高胶质瘤诊断的性能 NA 开发一种新型的多任务深度学习放射组学模型,实现胶质瘤的术前无创“综合诊断” 胶质瘤 数字病理学 脑肿瘤 MRI放射组学、液体活检 深度学习模型 影像数据 使用2019脑肿瘤分割挑战数据集(BraTS)和两个原始数据集,包括南昌大学第二附属医院和武汉大学人民医院的数据
995 2024-09-19
Flu-Net: two-stream deep heterogeneous network to detect flu like symptoms from videos using grey wolf optimization algorithm
2023, Journal of ambient intelligence and humanized computing
研究论文 本文提出了一种名为Flu-Net的AI框架,用于从视频中检测流感样症状,以限制感染的传播 本文创新性地采用了灰狼优化算法进行特征选择,并结合2D和3D卷积神经网络构建了一个双流异构网络 本文未详细讨论模型的泛化能力和对不同数据集的适应性 开发一种能够识别流感样症状的AI框架,以帮助控制传染病的传播 从监控视频中识别咳嗽、打喷嚏等流感样症状 计算机视觉 NA 灰狼优化算法 双流异构网络(2D和3D卷积神经网络) 视频 使用了BII Sneeze-Cough (BIISC)视频数据集,具体样本数量未提及
996 2024-09-19
On QSAR-based cardiotoxicity modeling with the expressiveness-enhanced graph learning model and dual-threshold scheme
2023, Frontiers in physiology IF:3.2Q2
研究论文 本文提出了一种基于QSAR的增强图学习模型和双阈值方案的心脏毒性建模方法 引入了子结构感知偏置的图子图变换网络模型,提高了GNN模型的表达能力,并提出了双阈值方案以优化模型性能 NA 改进基于QSAR的计算模型,以更准确地筛选出心脏毒性化合物 心脏毒性化合物 机器学习 心血管疾病 图神经网络 (GNN) 图子图变换网络模型 分子指纹 NA
997 2024-09-19
GUI Enabled Optimized Approach of CNN for Automatic Diagnosis of COVID-19 Using Radiograph Images
2023, New generation computing IF:2.0Q2
研究论文 本文提出了一种基于卷积神经网络(CNN)和图形用户界面(GUI)的优化方法,用于自动诊断COVID-19肺炎感染 本文的创新点在于结合了GUI和CNN,并针对21种肺炎放射图像进行了训练,实现了对COVID-19的高精度分类 本文未详细讨论模型的泛化能力和对其他疾病的适用性 研究目的是开发一种自动诊断COVID-19肺炎感染的方法,以减少疾病的快速传播 研究对象是COVID-19肺炎感染及其与其他肺炎类型的区分 计算机视觉 肺部疾病 卷积神经网络(CNN) 卷积神经网络(CNN) 图像 21种肺炎放射图像
998 2024-09-19
Comparative analysis of tissue-specific genes in maize based on machine learning models: CNN performs technically best, LightGBM performs biologically soundest
2023, Frontiers in genetics IF:2.8Q2
研究论文 本研究通过机器学习模型对玉米组织特异性基因进行比较分析,发现CNN在技术上表现最佳,而LightGBM在生物学上表现最合理 首次在植物领域使用多种机器学习模型(包括CNN和LightGBM)对RNA-seq数据进行分析,以识别组织特异性基因 研究仅限于玉米的多组织RNA-seq数据,未涉及其他植物或动物的数据 通过机器学习模型识别玉米组织特异性基因,并比较不同模型在技术与生物学上的表现 玉米的多组织RNA-seq数据和组织特异性基因 机器学习 NA RNA-seq CNN, LightGBM RNA-seq数据 1548个玉米多组织RNA-seq数据
999 2024-09-19
Application of Convolutional Neural Networks for COVID-19 Detection in X-ray Images Using InceptionV3 and U-Net
2023, New generation computing IF:2.0Q2
研究论文 本文探讨了使用InceptionV3和U-Net卷积神经网络模型在X光图像中检测COVID-19的应用 提出了结合InceptionV3和U-Net模型进行COVID-19检测的新方法,并实现了高达99%的准确率 未提及具体的局限性 开发快速且易于使用的COVID-19诊断工具,以替代传统的RT-PCR方法 COVID-19在X光图像中的检测 计算机视觉 COVID-19 卷积神经网络(CNN) InceptionV3和U-Net 图像 未提及具体样本数量
1000 2024-09-19
Detecting influential nodes with topological structure via Graph Neural Network approach in social networks
2023, International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
研究论文 本文提出了一种基于图卷积网络(GCN)的深度学习模型DeepInfNode,用于在社交网络中检测具有重要拓扑结构的关键节点 本文创新性地结合了网络拓扑和节点属性来评估节点的影响力,并提出了DeepInfNode模型,该模型在多个公开的标准图数据集上表现优于现有方法 NA 研究目的是开发一种能够有效检测社交网络中关键节点的方法 研究对象是社交网络中的节点及其拓扑结构 机器学习 NA 图卷积网络(GCN) 图卷积网络(GCN) 图数据 使用了多个公开的标准图数据集
回到顶部