本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1101 | 2024-09-26 |
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
2023-09, PLoS genetics
IF:4.0Q1
DOI:10.1371/journal.pgen.1010942
PMID:37703293
|
研究论文 | 提出了一种基于图自编码器的深度学习模型DeepRIG,用于从单细胞转录组数据中推断基因调控网络 | DeepRIG模型通过构建先验调控图并利用图自编码器嵌入全局调控信息,能够准确重建基因调控网络并优于现有方法 | NA | 推断单细胞转录组数据中的基因调控网络 | 基因调控网络 | 机器学习 | NA | 单细胞RNA测序 | 图自编码器 | 转录组数据 | 人类外周血单核细胞和三阴性乳腺癌样本 |
1102 | 2024-09-26 |
Advancing Naturalistic Affective Science with Deep Learning
2023-Sep, Affective science
IF:2.1Q2
DOI:10.1007/s42761-023-00215-z
PMID:37744976
|
综述 | 本文综述了深度学习在推进自然情感科学中的应用 | 引入深度学习方法来解决传统情感研究中的挑战,如量化自然行为、选择和操纵自然刺激以及建模自然情感过程 | 深度学习方法本身存在局限性,可能需要避免或缓解 | 推进更自然的情感科学研究 | 情感行为的不同渠道,包括面部表情、身体姿势、语音韵律和语言 | 自然语言处理 | NA | 深度学习 | NA | 行为数据 | NA |
1103 | 2024-09-26 |
Trends in the application of remote sensing in blue carbon science
2023-Sep, Ecology and evolution
IF:2.3Q2
DOI:10.1002/ece3.10559
PMID:37745789
|
研究论文 | 本文探讨了遥感技术在蓝碳科学中的应用趋势 | 本文通过文献计量分析评估了1990年至2022年6月间发表的2193篇论文,揭示了研究重点随时间的变化 | 需要增加对海草、盐沼和大型藻类的研究,整合技术,增加遥感技术在碳核算方法和信用体系中的应用,并加强国家间的合作和资源共享 | 评估蓝碳生态系统(如红树林、盐沼和海草)的现状、损失和增益,以支持气候政策制定 | 红树林、盐沼、海草等蓝碳生态系统 | 遥感 | NA | 遥感技术,包括光学卫星Landsat、LiDAR、无人机和声学传感器 | 机器学习和深度学习算法 | 遥感图像 | 2193篇已发表的论文 |
1104 | 2024-09-26 |
Deep learning-based model detects atrial septal defects from electrocardiography: a cross-sectional multicenter hospital-based study
2023-Sep, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2023.102141
PMID:37753448
|
研究论文 | 本文提出了一种基于卷积神经网络(CNN)的模型,用于从12导联心电图(ECG)中检测房间隔缺损(ASD),并在多中心医院进行横断面研究 | 本文的创新点在于利用深度学习技术,特别是卷积神经网络,从常规的12导联心电图中自动检测房间隔缺损,从而提高诊断的敏感性和特异性 | 本文的局限性在于样本选择可能存在偏倚,且未详细讨论模型的泛化能力在不同人群中的表现 | 本研究旨在通过开发和验证一种基于深度学习的模型,提高房间隔缺损的早期检测和诊断准确性 | 本研究的对象是从三所医院收集的671,201份12导联心电图,涉及80,947名患者 | 机器学习 | 心血管疾病 | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 心电图(ECG) | 671,201份心电图,涉及80,947名患者 |
1105 | 2024-09-26 |
Predicting Individual Patient Platelet Demand in a Large Tertiary Care Hospital Using Machine Learning
2023-Aug, Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie
IF:1.9Q4
DOI:10.1159/000528428
PMID:37767277
|
研究论文 | 本文研究了使用机器学习方法预测大型三级医院中单个患者的血小板需求 | 本文首次引入了基于AI的患者个体血小板需求预测方法 | 模型的敏感性表现不佳,需要进一步改进 | 评估多模态数据以预测患者在3天内的血小板输注需求 | 25,190名患者的数据,包括血小板输注数量、血小板计数、药物、急性血小板疾病、手术、年龄、性别和住院时间 | 机器学习 | NA | 机器学习 | NA | 多模态数据 | 25,190名患者(42%女性,58%男性) |
1106 | 2024-09-26 |
Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer
2023, Exploration of targeted anti-tumor therapy
DOI:10.37349/etat.2023.00158
PMID:37745691
|
研究论文 | 研究使用深度学习算法对非小细胞肺癌脑转移的表皮生长因子受体和间变性淋巴瘤激酶状态进行分类 | 首次使用卷积神经网络Efficient Net模型对脑转移的EGFR和ALK状态进行分类,并与基于语义特征的分类方法进行比较 | 研究样本量较小,且仅使用了MRI序列数据 | 探讨开发深度学习算法对非小细胞肺癌脑转移的EGFR和ALK状态进行分类的可行性 | 非小细胞肺癌脑转移患者的EGFR和ALK状态 | 计算机视觉 | 肺癌 | MRI | CNN | 图像 | 117名患者,其中33名EGFR阳性,43名ALK阳性,41名无突变 |
1107 | 2024-09-26 |
A review on deep learning applications in highly multiplexed tissue imaging data analysis
2023, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2023.1159381
PMID:37564726
|
综述 | 本文综述了深度学习在高度多重组织成像数据分析中的应用及其对肿瘤学的影响 | 本文强调了使用高度多重图像(空间蛋白质组数据)相对于单染色传统病理图像的优势,前者能够提供后者无法获得的深层机制洞察,即使借助可解释的人工智能 | NA | 探讨人工智能与空间组学技术结合在肿瘤学中的影响,特别是深度学习在生物医学图像分析中的应用 | 细胞分割、细胞表型识别、癌症预后和治疗预测 | 计算机视觉 | 肿瘤学 | 深度学习 | NA | 图像 | NA |
1108 | 2024-09-26 |
An approach to the diagnosis of lumbar disc herniation using deep learning models
2023, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2023.1247112
PMID:37731760
|
研究论文 | 本文研究了使用深度学习模型在磁共振成像(MRI)中诊断腰椎间盘突出(LDH)的方法 | 本文创新性地使用了YOLOv5、YOLOv6和YOLOv7模型来检测不同腰椎间盘区域的LDH,并比较了不同模型的性能 | 本文未详细讨论模型的泛化能力和在不同数据集上的表现 | 验证YOLO系列模型在MRI图像中检测LDH的有效性 | 腰椎间盘突出的检测 | 计算机视觉 | 腰椎间盘突出 | 深度学习 | YOLOv5, YOLOv6, YOLOv7 | 图像 | 550个数据集,包括增强和非增强数据 |
1109 | 2024-09-26 |
A curated census of pathogenic and likely pathogenic UTR variants and evaluation of deep learning models for variant effect prediction
2023, Frontiers in molecular biosciences
IF:3.9Q2
DOI:10.3389/fmolb.2023.1257550
PMID:37745687
|
研究论文 | 本文开发了一个高置信度的致病性和可能致病性UTR变异集,并评估了深度学习模型对变异效应预测的性能 | 本文首次系统地收集和评估了3'和5' UTR的致病性和可能致病性变异,并利用深度学习模型进行预测,验证了这些变异的致病性 | 本文的局限性在于仅使用了ClinVar数据库中的变异数据,可能存在数据偏差 | 评估深度学习模型对UTR变异效应预测的准确性,并提供一个高置信度的致病性和可能致病性UTR变异集 | 3'和5' UTR的致病性和可能致病性变异 | 数字病理学 | 罕见病 | 深度学习 | 深度学习模型 | 序列数据 | 295个3' UTR变异和188个5' UTR变异,其中26个3' UTR变异和68个5' UTR变异被分类为致病性或可能致病性 |
1110 | 2024-09-26 |
Low-Latency Active Noise Control Using Attentive Recurrent Network
2023, IEEE/ACM transactions on audio, speech, and language processing
DOI:10.1109/taslp.2023.3244528
PMID:37746522
|
研究论文 | 本文提出了一种使用注意力循环网络(ARN)的低延迟主动噪声控制(ANC)方法 | 引入了延迟补偿训练和改进的重叠相加方法,以减少深度ANC的算法延迟 | NA | 解决主动噪声控制中的低延迟问题 | 主动噪声控制系统 | 机器学习 | NA | 注意力循环网络(ARN) | 循环神经网络(RNN) | 音频信号 | NA |
1111 | 2024-09-25 |
Reporting Quality of Research Studies on AI Applications in Medical Images According to the CLAIM Guidelines in a Radiology Journal With a Strong Prominence in Asia
2023-12, Korean journal of radiology
IF:4.4Q1
DOI:10.3348/kjr.2023.1027
PMID:38016678
|
研究论文 | 评估亚洲放射学期刊中应用深度学习的医学影像研究报告质量 | 使用CLAIM指南评估报告质量,并提供亚洲地区报告质量的见解 | 样本仅限于韩国放射学期刊,可能无法代表所有亚洲期刊 | 评估应用深度学习的医学影像研究的报告质量 | 38篇发表在韩国放射学期刊上的文章 | 计算机视觉 | NA | 深度学习 | NA | 医学影像 | 38篇文章 |
1112 | 2024-09-25 |
Response to "Medical Statistics Unlock the Gateway to Further Research: Using Deep Learning to Predict CDKN2A/B Homozygous Deletion in Isocitrate Dehydrogenase-Mutant Astrocytoma"
2023-12, Korean journal of radiology
IF:4.4Q1
DOI:10.3348/kjr.2023.0940
PMID:38016689
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1113 | 2024-09-25 |
Medical Statistics Unlock the Gateway to Further Research: Using Deep Learning to Predict CDKN2A/B Homozygous Deletion in Isocitrate Dehydrogenase-Mutant Astrocytoma
2023-12, Korean journal of radiology
IF:4.4Q1
DOI:10.3348/kjr.2023.0925
PMID:38016690
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1114 | 2024-09-25 |
Dataset of a parameterized U-bend flow for deep learning applications
2023-Oct, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2023.109477
PMID:37645446
|
研究论文 | 本文介绍了一个包含10,000个U型弯曲流体流动和传热模拟的数据集,适用于深度学习应用 | 该数据集的独特之处在于每个形状可以通过三种不同的数据类型表示,包括设计参数和目标组合、五种不同分辨率的2D图像以及数值模拟的网格单元值 | NA | 提供一个全面的基准数据集,用于研究设计优化领域中的各种问题和方法 | U型弯曲流体流动和传热模拟 | 计算流体动力学 | NA | 计算流体动力学方法 | 深度学习 | 设计参数、2D图像、数值模拟网格单元值 | 10,000个模拟样本 |
1115 | 2024-09-25 |
Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques
2023-Oct, Photoacoustics
IF:7.1Q1
DOI:10.1016/j.pacs.2023.100544
PMID:37671317
|
研究论文 | 本文利用卷积神经网络(CNN)对颈动脉斑块的光谱光声成像(sPAI)进行分类 | 本文首次使用CNN对sPAI图像中的斑块成分进行分类,无需进行光通量或光谱校正 | 研究样本量较小,仅涉及九个颈动脉斑块 | 开发一种新的方法来准确分类颈动脉斑块的成分,以评估其易损性 | 颈动脉斑块的光谱光声成像 | 计算机视觉 | 心血管疾病 | 光谱光声成像(sPAI) | 卷积神经网络(CNN) | 图像 | 九个颈动脉斑块 |
1116 | 2024-09-25 |
Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies
2023-Sep-17, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.13.557544
PMID:37745446
|
研究论文 | 本文研究了基于深度自编码器的行为模式识别在高维斑马鱼研究中优于传统统计方法 | 本文提出了使用半监督深度自编码器从无暴露的斑马鱼幼体行为数据中提取典型“正常”行为,并能识别出传统统计框架未捕捉到的多种化学物质引起的行为异常 | NA | 本文旨在开发一种先进的行为数据分析方法,以更好地理解和识别斑马鱼在暴露于有毒物质后的行为变化 | 斑马鱼幼体及其在暴露于纳米材料、芳香族化合物、全氟和多氟烷基物质(PFAS)等环境污染物后的行为变化 | 机器学习 | NA | 深度自编码器 | 深度自编码器 | 行为数据 | 大量斑马鱼幼体样本 |
1117 | 2024-09-25 |
B-factor prediction in proteins using a sequence-based deep learning model
2023-Sep-08, Patterns (New York, N.Y.)
DOI:10.1016/j.patter.2023.100805
PMID:37720331
|
研究论文 | 本文开发了一种基于序列的深度学习模型,用于预测蛋白质中的B因子 | 该模型在2442个蛋白质上测试,比现有最先进模型高出30% | NA | 开发一种能够准确预测蛋白质中B因子的深度学习模型 | 蛋白质中的B因子 | 机器学习 | NA | 深度学习 | 深度学习模型 | 序列 | 2442个蛋白质 |
1118 | 2024-09-25 |
Kernel-weighted contribution: a method of visual attribution for 3D deep learning segmentation in medical imaging
2023-Sep, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.10.5.054001
PMID:37692092
|
研究论文 | 本文介绍了一种名为核加权贡献的视觉解释方法,用于三维医学图像分割模型的解释 | 核加权贡献方法专门为医学图像分割模型设计,通过评估每个激活图对预测分割的相对贡献来评估特征重要性 | NA | 解释深度学习模型在医学图像分割中的决策,以促进其在医疗领域的广泛应用 | 三维医学图像分割模型 | 计算机视觉 | NA | NA | 分割模型 | 图像 | 100个测试样本 |
1119 | 2024-09-25 |
Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study
2023-Sep, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2023.102176
PMID:37662514
|
研究论文 | 开发并验证了一种基于卷积神经网络的模型,用于预测乳腺癌患者前哨淋巴结或非前哨淋巴结转移的风险 | 提出了一种基于卷积神经网络的模型,用于预测乳腺癌患者前哨淋巴结和非前哨淋巴结的转移风险,并展示了其在不同验证集中的良好表现 | NA | 开发并验证一种自动化的术前深度学习工具,用于预测乳腺癌患者前哨淋巴结和非前哨淋巴结的转移风险 | 乳腺癌患者的前哨淋巴结和非前哨淋巴结转移风险 | 机器学习 | 乳腺癌 | 动态对比增强磁共振成像(DCE-MRI) | 卷积神经网络(CNN) | 图像 | 988名乳腺癌患者 |
1120 | 2024-09-25 |
Structure-based prediction of nucleic acid binding residues by merging deep learning- and template-based approaches
2023-09, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1011428
PMID:37672551
|
研究论文 | 本文开发了一种名为NABind的新型结构基础整合算法,用于准确预测DNA和RNA结合残基 | 结合了深度学习和模板基础方法,采用堆叠策略和随机游走算法进行后处理,显著提高了预测性能 | NA | 提高蛋白质中核酸结合残基的预测准确性 | DNA和RNA结合残基 | 机器学习 | NA | 深度学习 | 图注意力网络 | 序列和结构描述符 | NA |