本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2025-06-18 |
An Interpretable Longitudinal Preeclampsia Risk Prediction Using Machine Learning
2023-Aug-16, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.08.16.23293946
PMID:37645797
|
研究论文 | 本研究开发了一种基于机器学习的可解释性纵向子痫前期风险预测工具 | 使用常规临床数据开发了全面的纵向预测工具,能够在整个孕期预测子痫前期风险,并测试了多种预测模型,包括机器学习和深度学习模型,展示了高预测能力 | 研究中存在数据泄露、过拟合或缺乏普遍性的担忧 | 开发一种工具来纵向预测子痫前期风险 | 在2015年2月至2023年6月期间在新英格兰地区六家社区医院和两家三级医院分娩的患者 | 机器学习 | 子痫前期 | 机器学习 | 线性回归、随机森林、xgboost和深度神经网络 | 社会人口学、临床诊断、家族史、实验室和生命体征数据 | 120,752名患者,其中6,920名患有子痫前期 |
102 | 2025-06-18 |
Simultaneous Estimation of Hand Configurations and Finger Joint Angles Using Forearm Ultrasound
2023-Feb, IEEE transactions on medical robotics and bionics
IF:3.4Q2
DOI:10.1109/tmrb.2023.3237774
PMID:40511365
|
研究论文 | 提出一种基于卷积神经网络(CNN)的深度学习流程,用于预测手指关节角度和手部配置分类 | 首次利用前臂超声图像同时估计手部配置和掌指关节(MCP)角度,填补了文献中的空白 | 研究样本量较小,仅涉及6名受试者 | 开发流畅直观的人机交互方法,用于数字系统、增强/虚拟现实(AR/VR)界面和物理机器人系统 | 手部运动识别,特别是手部配置分类和MCP关节角度检测 | 计算机视觉 | NA | 前臂超声成像 | CNN, 支持向量分类器(SVC), 多层感知机(MLP) | 图像 | 6名受试者的前臂超声图像和运动捕捉数据 |
103 | 2025-06-15 |
CRPU-NET: a deep learning model based semantic segmentation for the detection of colorectal polyp in lower gastrointestinal tract
2023-12-27, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad160f
PMID:38100789
|
research paper | 本文提出了一种名为CRPU-Net的深度学习模型,用于结肠镜检查图像中息肉的分割 | CRPU-Net是一种新型的轻量级模型,专门用于结肠息肉的分割,并在性能上超越了现有的先进模型 | NA | 开发一种高效的深度学习模型,用于自动分割结肠镜检查图像中的息肉 | 结肠镜检查图像中的息肉 | digital pathology | colorectal polyp | deep learning | CRPU-Net | image | 两个结肠镜检查图像数据集(CVC-ColonDB和CVC-ClinicDB) |
104 | 2025-06-15 |
Secret learning for lung cancer diagnosis-a study with homomorphic encryption, texture analysis and deep learning
2023-12-08, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad0b4b
PMID:37944251
|
研究论文 | 本文提出了一种结合同态加密、纹理分析和深度学习的肺癌诊断方法,旨在保护用户隐私的同时提高诊断准确性 | 首次在同态加密的CT扫描图像上提取纹理信息并进行深度学习分类,解决了现有方法在隐私保护方面的不足 | 实验样本类型和数量未明确说明,可能影响结果的普适性 | 开发一种保护隐私的肺癌自动诊断系统 | CT扫描图像(正常肺组织、腺癌、大细胞癌和鳞状细胞癌) | 数字病理学 | 肺癌 | 同态加密、纹理分析、深度学习 | 深度学习(具体模型未说明) | CT图像 | NA |
105 | 2025-06-15 |
Spin device-based image edge detection architecture for neuromorphic computing
2023-Nov-15, Nanotechnology
IF:2.9Q2
DOI:10.1088/1361-6528/ad0056
PMID:37797609
|
研究论文 | 提出一种基于自旋轨道力矩磁随机存储器(SOT-DLC MRAM)的交叉阵列设计,用于图像边缘检测,实现能效更高的硬件实现 | 采用SOT-DLC MRAM交叉阵列设计,相比传统CMOS设计在能效、面积效率和泄漏功耗方面有显著提升,并将边缘检测框架扩展到脉冲域,结合蚁群优化算法 | 未提及实际硬件实现的测试结果或具体应用场景的验证 | 开发一种能效更高的硬件架构,用于图像边缘检测 | 图像边缘检测 | 计算机视觉 | NA | 自旋轨道力矩磁随机存储器(SOT-DLC MRAM) | 蚁群优化算法(ACO) | 图像 | 未明确提及具体样本数量 |
106 | 2025-06-13 |
One hundred years of neurosciences in the arts and humanities, a bibliometric review
2023-11-09, Philosophy, ethics, and humanities in medicine : PEHM
DOI:10.1186/s13010-023-00147-3
PMID:37946225
|
综述 | 本文通过文献计量学方法分析了近一百年来神经科学与艺术和人文学科的交叉研究趋势 | 首次通过纵向文献计量分析揭示了神经科学对艺术与人文学科主题方向的重大影响 | 研究仅基于Scopus数据库的文献数据,可能未涵盖所有相关研究 | 探究神经科学技术在创造力与审美体验交叉领域的历史证据 | 1922-2022年间3612篇跨学科研究文献 | 神经科学与艺术人文交叉领域 | NA | 文献计量分析、PRISMA筛选方法、算法聚类 | 机器学习与深度学习模型 | 文献元数据 | 3612篇文献 |
107 | 2025-06-13 |
Combined genome-wide association study of 136 quantitative ear morphology traits in multiple populations reveal 8 novel loci
2023-07, PLoS genetics
IF:4.0Q1
DOI:10.1371/journal.pgen.1010786
PMID:37459304
|
研究论文 | 通过多人群的136个耳形态定量性状的全基因组关联研究,揭示了8个新的遗传位点 | 发现了8个与人类耳特征相关的新遗传位点,并揭示了耳形态与其他表面外胚层衍生性状的共享遗传决定因素 | 研究主要基于欧洲、亚洲和拉丁美洲的五个队列,可能无法完全代表全球人群的遗传多样性 | 探索人类耳形态的遗传结构及其与其他表面外胚层衍生性状的遗传关系 | 14,921名来自欧洲、亚洲和拉丁美洲的个体 | 基因组学 | NA | GWAS meta-analysis, C-GWASs, 深度学习 | NA | 数字面部图像 | 14,921名个体 |
108 | 2025-06-10 |
Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning
2023-May-08, International journal on interactive design and manufacturing
DOI:10.1007/s12008-023-01327-3
PMID:40478981
|
研究论文 | 本文提出了一种基于深度学习的焊接缺陷分类方法,使用VGG16迁移学习和自适应微调技术 | 采用数据增强方法处理小规模X射线图像数据集,并比较了VGG16和ResNet50两种卷积神经网络架构的性能 | 数据集规模较小且类别分布不平衡,仅包含15个不同的类别 | 开发一种自动化焊接缺陷检测和分类系统 | 焊接缺陷的X射线图像 | 计算机视觉 | NA | 数据增强,迁移学习 | CNN(VGG16和ResNet50) | 图像 | 小规模X射线图像数据集,包含15个类别 |
109 | 2025-06-10 |
Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review
2023-Mar-11, Journal of the knowledge economy
IF:4.0Q1
DOI:10.1007/s13132-023-01183-2
PMID:40478928
|
系统综述 | 本文通过文献计量和定性内容分析方法,探讨人工智能(AI)在经济发展(ED)中的作用和地位 | 首次将研究聚焦于AI与经济开发的交叉领域,采用两步法方法论,结合文献计量和内容分析 | 研究基于文献分析,可能未涵盖所有实际应用案例 | 探讨AI技术对经济发展的影响及其在该领域中的角色 | AI与经济发展交叉领域的研究文献 | 机器学习 | NA | 文献计量工具Bibliometrix,文献耦合算法 | NA | 文本 | 2211份文献 |
110 | 2025-06-10 |
A Large-Scale IoT-Based Scheme for Real-Time Prediction of Infectious Disease Symptoms
2023-Feb-02, Mobile networks and applications : MONET
DOI:10.1007/s11036-023-02111-z
PMID:40479340
|
研究论文 | 提出了一种基于物联网(IoT)的大规模实时监测方案,用于通过人们的行为和无线体域网(WBAN)预测传染病症状 | 利用IoT和WBAN技术实时监测人群行为,预测传染病症状及传播,弥补了以往研究依赖医疗设施内拍摄图像的局限性 | 需要构建强大的覆盖模型以确保实时监测,且性能评估依赖于模拟环境 | 开发实时预测传染病症状及传播的监测方案 | 人群行为及传染病症状 | 物联网与健康监测 | 传染病 | IoT, WBAN, 深度学习 | 深度学习模型 | 图像、声音、视频 | NA |
111 | 2025-06-08 |
Deep Learning Based Metabolite Annotation
2023-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC40787.2023.10341007
PMID:38082953
|
研究论文 | 本文探讨了基于深度学习的代谢物注释方法,旨在解决非靶向代谢组学研究中代谢物注释的瓶颈问题 | 研究了高维光谱数据和分子指纹的表示方法,以提高分子指纹预测的准确性 | 依赖于有限的公开光谱库,且仅覆盖已知化合物的一部分 | 提高非靶向代谢组学研究中代谢物注释的准确性和效率 | 代谢物及其MS/MS光谱数据 | 机器学习 | NA | LC-MS, MS/MS | CNN | 光谱数据 | 来自MoNA存储库和NIST 20的MS/MS光谱数据 |
112 | 2025-06-08 |
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans
2023-03, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2022.106512
PMID:36701964
|
研究论文 | 本文提出了一种基于深度集成学习的自动非进展性AMD分类方法,通过优化的视网膜层分割和SD-OCT扫描提高诊断准确性 | 结合图割算法和三次样条自动标注11个视网膜边界,并采用深度集成机制结合Bagged Tree和端到端深度学习分类器 | 未提及具体的外部数据集规模和多样性,可能影响模型的泛化能力 | 提高年龄相关性黄斑变性(AMD)的自动检测准确性 | SD-OCT扫描图像中的视网膜层 | 数字病理学 | 年龄相关性黄斑变性 | SD-OCT扫描 | 深度集成学习(Bagged Tree + 深度学习分类器) | 医学图像 | 内部和外部数据集(具体数量未提及) |
113 | 2025-06-07 |
Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician
2023-10, The Journal of infection
IF:14.3Q1
DOI:10.1016/j.jinf.2023.07.006
PMID:37468046
|
综述 | 本文总结了人工智能(AI)、机器学习和深度学习在人类感染研究和临床实践中的最新应用及未来潜力 | 重点关注使用前瞻性收集的真实世界数据进行临床验证的研究,以及具有转化潜力的研究,如新药发现和基于微生物组的干预 | 大多数研究缺乏真实世界的验证或临床效用指标,研究设计和报告的异质性限制了可比性,存在算法透明度和偏见风险等实际和伦理问题 | 探讨AI在感染研究和临床管理中的应用及其对临床感染实践的潜在影响 | 人类感染的研究和管理 | 机器学习 | 感染性疾病 | AI、机器学习、深度学习 | NA | 实验室诊断数据、临床影像数据、公共卫生数据 | 1617篇PubMed文献被筛选,优先考虑临床试验、系统评价和荟萃分析 |
114 | 2025-06-07 |
A survey on recent trends in deep learning for nucleus segmentation from histopathology images
2023-Mar-06, Evolving systems
IF:2.7Q3
DOI:10.1007/s12530-023-09491-3
PMID:38625364
|
综述 | 本文系统综述了过去五年(2017-2021)中深度学习在组织病理学图像中细胞核分割的应用 | 总结了多种分割模型(如U-Net、SCPP-Net、Sharp U-Net和LiverNet)的相似性、优势、使用的数据集以及新兴研究领域 | 仅覆盖了过去五年的研究,可能未包括最新的技术进展 | 探讨深度学习在细胞核分割中的最新趋势和应用 | 组织病理学图像中的细胞核 | 数字病理学 | 癌症 | 深度学习 | U-Net, SCPP-Net, Sharp U-Net, LiverNet | 图像 | NA |
115 | 2025-06-07 |
PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation
2023-Feb-17, Evolving systems
IF:2.7Q3
DOI:10.1007/s12530-023-09489-x
PMID:38625320
|
research paper | 提出了一种名为PDRF-Net的渐进密集残差融合网络,用于COVID-19肺部CT图像的分割 | 引入了密集跳跃连接以捕获多级上下文信息,设计了高效的聚合残差模块,结合视觉Transformer和残差块,以及双边通道像素加权模块逐步融合多分支特征图 | NA | 实现COVID-19患者肺部CT图像中病变部位的快速准确分割 | COVID-19患者的肺部CT图像 | digital pathology | COVID-19 | CT图像分割 | PDRF-Net (progressive dense residual fusion network) | image | 在两个COVID-19数据集上进行测试 |
116 | 2025-06-07 |
AMTLDC: a new adversarial multi-source transfer learning framework to diagnosis of COVID-19
2023-Jan-12, Evolving systems
IF:2.7Q3
DOI:10.1007/s12530-023-09484-2
PMID:38625255
|
research paper | 提出了一种新的对抗性多源迁移学习框架AMTLDC,用于COVID-19的诊断 | AMTLDC框架通过对抗性学习提取多个数据源间的通用表示,提高了模型在不同数据集间的泛化能力 | 未明确说明框架在极端数据不足情况下的表现 | 提高COVID-19诊断模型的跨数据集泛化性能 | COVID-19医学影像数据 | digital pathology | COVID-19 | adversarial transfer learning | CNN | medical images | NA |
117 | 2025-06-07 |
Detection of anomalies in cycling behavior with convolutional neural network and deep learning
2023, European transport research review
IF:5.1Q1
DOI:10.1186/s12544-023-00583-4
PMID:38625141
|
研究论文 | 本文提出了一种基于深度学习的异常检测方法BeST-DAD,用于识别骑行行为中的异常并在地图上标记危险点 | 结合CNN和自编码器(AE)进行异常检测,相比传统PCA方法表现更优 | 需要依赖GPS轨迹数据,可能受数据质量和覆盖范围限制 | 提高骑行安全性,通过技术手段识别潜在危险点 | 骑行者的GPS轨迹数据 | 机器学习 | NA | 深度学习 | CNN, Autoencoder | GPS轨迹数据 | 未明确说明具体样本数量,涉及多个用户的数据 |
118 | 2025-06-07 |
Evaluation of artificial intelligence techniques in disease diagnosis and prediction
2023, Discover artificial intelligence
DOI:10.1007/s44163-023-00049-5
PMID:40478140
|
综述 | 本文综述了人工智能技术在疾病诊断和预测中的应用及其优势 | 涵盖了多种AI技术在医疗图像分析中的应用,并比较了ML和DL技术的优势 | 讨论了AI在医疗领域中的现有挑战和局限性 | 评估AI技术在疾病诊断和预测中的应用效果 | 多种疾病(如癌症、心脏、肺、皮肤、遗传和神经疾病)的诊断和预测 | 数字病理学 | 多种疾病(如癌症、心脏、肺、皮肤、遗传和神经疾病) | 机器学习(ML)和深度学习(DL) | SVM, CNN | 医疗图像 | NA |
119 | 2025-06-05 |
Performance of ChatGPT on the pharmacist licensing examination in Taiwan
2023-07-01, Journal of the Chinese Medical Association : JCMA
IF:1.9Q2
DOI:10.1097/JCMA.0000000000000942
PMID:37227901
|
research paper | 评估ChatGPT在台湾药师执照考试中的表现及其在药学教育中的潜在作用 | 首次评估ChatGPT在台湾药师执照考试中的表现,探讨其在药学教育中的应用潜力 | 排除了图形问题、化学公式和表格,仅评估了文本问题,且使用的是ChatGPT 3.5版本 | 评估ChatGPT在药师执照考试中的准确性并探讨其在药学教育中的潜在作用 | 台湾药师执照考试的题目 | natural language processing | NA | ChatGPT 3.5 | ChatGPT | text | 2023年台湾药师执照考试的第一阶段和第二阶段题目 |
120 | 2025-06-04 |
Large-Scale Information Retrieval and Correction of Noisy Pharmacogenomic Datasets through Residual Thresholded Deep Matrix Factorization
2023-Dec-08, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.07.570723
PMID:38106027
|
研究论文 | 本文介绍了一种名为残差阈值深度矩阵分解(RT-DMF)的鲁棒且可扩展的深度学习框架,用于校正和填补药物敏感性数据中的噪声 | RT-DMF通过深度矩阵分解(DMF)和迭代残差阈值(RT)程序,有效识别并保留具有治疗相关性的信号,从而校正噪声并填补缺失数据 | 方法依赖于单一药物敏感性数据矩阵作为输入,可能无法完全解决数据集中所有不一致性问题 | 解决药物敏感性数据中的噪声问题,提高下游分析的准确性 | 药物敏感性数据集 | 机器学习 | 癌症 | 深度矩阵分解(DMF),迭代残差阈值(RT) | RT-DMF | 矩阵数据 | 模拟数据集和真实药物基因组学数据集 |