本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 101 | 2025-10-05 |
Transfer learning enables predictions in network biology
2023-06, Nature
IF:50.5Q1
DOI:10.1038/s41586-023-06139-9
PMID:37258680
|
研究论文 | 本研究开发了名为Geneformer的基于注意力机制的深度学习模型,通过在大规模单细胞转录组数据上预训练,能够在网络生物学中实现数据有限情况下的精准预测 | 首次将迁移学习应用于网络生物学领域,开发了能够自监督学习网络层次结构的注意力模型,可在有限数据条件下进行上下文特异性预测 | 模型性能依赖于预训练数据的质量和规模,在特定疾病类型中的应用仍需进一步验证 | 解决网络生物学中数据稀缺条件下的基因网络预测问题,加速关键网络调控因子和治疗靶点的发现 | 基因网络、单细胞转录组数据、染色质和网络动力学 | 机器学习 | 心肌病 | 单细胞转录组测序 | Transformer, 注意力机制 | 单细胞转录组数据 | 约3000万个单细胞转录组 | NA | Transformer | 预测准确率 | NA |
| 102 | 2025-10-05 |
A multimodal deep learning model to infer cell-type-specific functional gene networks
2023-Feb-14, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-023-05146-x
PMID:36788477
|
研究论文 | 开发了一种多模态深度学习模型来预测人脑中细胞类型特异性功能基因网络 | 首次整合单核基因表达数据和全局蛋白质相互作用网络来构建细胞类型特异性功能基因网络 | 目前仅应用于人脑组织,尚未验证在其他组织中的适用性 | 预测细胞类型特异性功能基因网络以理解基因在特定细胞类型中的功能关系 | 人脑中的不同细胞类型及其功能基因网络 | 生物信息学 | 自闭症,阿尔茨海默病 | 单核RNA测序,蛋白质相互作用网络分析 | 多模态深度学习,CNN,boosting tree | 基因表达数据,蛋白质相互作用数据 | NA | NA | MDLCN,CNN | ROC曲线下面积,精确召回曲线下面积 | NA |
| 103 | 2025-10-05 |
SEResUTer: a deep learning approach for accurate ECG signal delineation and atrial fibrillation detection
2023-Dec-15, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ad02da
PMID:37827168
|
研究论文 | 提出一种结合U-Net、ResNet和Transformer的深度学习模型SEResUTer,用于心电信号波形分割和房颤检测 | 在U-Net架构中集成ResNet模块和Transformer编码器替代传统卷积块,并提出处理不完整专家标注的新型掩码策略 | NA | 实现高精度心电信号波形分割和房颤自动检测 | 心电信号波形(P波、QRS波、T波)和房颤心律 | 数字病理 | 心血管疾病 | 心电信号分析 | 深度学习 | 心电信号 | QTDB、LUDB、CPSC2021和CPSC2018数据集 | NA | U-Net, ResNet, Transformer | F1-score, 敏感度, 阳性预测率, 准确率 | NA |
| 104 | 2025-10-05 |
Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach
2023-Dec-15, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ad0426
PMID:38099538
|
研究论文 | 提出一种基于光电容积脉搏波图像编码与融合的无袖带血压估计方法 | 首次从2D视角将PPG信号转换为五种图像编码,并设计端到端的图像编码融合架构进行血压估计 | 仅在UCI数据库上进行验证,需要更多临床数据验证泛化能力 | 开发基于PPG的无袖带血压估计方法 | 光电容积脉搏波信号 | 机器学习 | 心血管疾病 | 光电容积脉搏波技术 | CNN | 图像 | UCI数据库 | NA | 编码器-解码器架构 | 均方根误差,平均绝对误差 | NA |
| 105 | 2025-10-05 |
MAG-Res2Net: a novel deep learning network for human activity recognition
2023-Nov-28, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ad0ab8
PMID:37939391
|
研究论文 | 提出一种名为MAG-Res2Net的新型深度学习网络用于人类活动识别 | 结合Borderline-SMOTE数据上采样算法、基于度量学习的损失函数组合算法和Lion优化算法 | NA | 解决人类活动多样性和数据质量带来的特征提取困难 | 人类活动识别 | 机器学习 | NA | 深度学习 | MAG-Res2Net | 多模态活动数据 | 三个公共数据集(UCI-HAR、WISDM、CSL-SHARE) | NA | MAG-Res2Net | 准确率,F1-macro,F1-weighted | NA |
| 106 | 2025-10-05 |
Deep learning with fetal ECG recognition
2023-Nov-27, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ad0ab7
PMID:37939396
|
研究论文 | 提出一种基于深度学习的胎儿心电图识别新方法 | 开发了跨域一致卷积神经网络(CDC-Net),解决了ICA方法在胎儿心电图提取中幅度、顺序和正负值不确定的问题 | NA | 实现多通道心电图数据中胎儿心电信号的自动识别 | 胎儿心电信号 | 机器学习 | 心血管疾病 | 独立成分分析(ICA), 心电图监测 | CNN | 心电信号数据 | 来自两个数据库(ADFECGDB和Daisy数据库)的信号数据 | NA | CDC-Net | 精确率, 召回率, F1分数 | NA |
| 107 | 2025-10-05 |
A Two-Stage Automatic System for Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms
2023-11, eNeuro
IF:2.7Q3
DOI:10.1523/ENEURO.0111-23.2023
PMID:37914407
|
研究论文 | 开发基于深度学习的自动系统,用于从头皮脑电图中检测发作间期癫痫样放电 | 提出结合时序卷积网络的IED检测器和新型双蒙太奇决策机制的两阶段自动检测系统 | 仅使用484份头皮脑电图记录,样本规模有限 | 开发性能可靠的自动IED检测系统以辅助临床脑电图解读 | 头皮脑电图中的发作间期癫痫样放电 | 医疗信号处理 | 癫痫 | 脑电图 | 深度神经网络 | 脑电图信号 | 484份头皮脑电图记录(406训练,78测试) | NA | 时序卷积网络, 深度神经网络 | AUPRC, 假阳性率, F1分数, kappa一致性分数 | NA |
| 108 | 2025-10-05 |
Atrial fibrillation detection with signal decomposition and dilated residual neural network
2023-Oct-05, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/acfa61
PMID:37714186
|
研究论文 | 提出一种结合信号分解和扩张残差神经网络的心房颤动检测方法 | 提出基于R峰检测的时间掩模生成伪QRS复合波信号和伪T、P波信号的特征提取方法,并设计扩张残差神经网络处理分解后的信号 | NA | 通过深度学习方法提高穿戴设备心电图信号中心房颤动的检测性能 | 心电图信号 | 机器学习 | 心血管疾病 | 心电图信号分析 | CNN | 信号数据 | PhysioNet/CinC 2017挑战赛数据集和MIT-BIH心房颤动数据库 | NA | 扩张残差神经网络 | F1分数 | NA |
| 109 | 2025-10-05 |
Versatile recognition of graphene layers from optical images under controlled illumination through green channel correlation method
2023-Aug-17, Nanotechnology
IF:2.9Q2
DOI:10.1088/1361-6528/ace979
PMID:37478831
|
研究论文 | 提出一种基于绿色通道相关性的方法,从光学图像中识别氧化基底上剥离石墨烯的层数 | 利用绿色通道相关性替代传统深度学习方法和显微分析,仅需少量训练图像即可实现石墨烯层数识别 | 需要在周围光线对样品影响最小的条件下工作,对非均匀光照条件的适应性有限 | 开发快速、低成本的非破坏性石墨烯层数识别方法 | 氧化基底上的剥离石墨烯样品 | 计算机视觉 | NA | 光学成像 | NA | 图像 | 少量训练图像配合数千张GitHub测试图像 | NA | NA | NA | NA |
| 110 | 2025-10-05 |
Standard-based personalized healthcare delivery for kidney illness using deep learning
2023-Aug-10, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/ace09f
PMID:37343580
|
研究论文 | 本研究使用深度学习技术分析标准化电子健康记录数据,用于诊断肾脏相关疾病 | 首次采用编码器-组合器-解码器(ECD)架构分析标准化医疗数据集,为肾脏疾病诊断提供新方法 | 模型性能需由医疗专业人士在实际医疗机构中进一步评估验证 | 通过深度学习技术改进肾脏疾病的诊断和个性化医疗服务 | 肾脏相关疾病患者 | 机器学习 | 肾脏疾病 | 深度学习 | 深度学习神经网络 | 电子健康记录 | 巴西公共卫生系统提供的ORBDA基准数据集部分数据 | NA | 编码器-组合器-解码器(ECD) | 精确率,召回率,F1分数 | NA |
| 111 | 2025-10-05 |
BTCRSleep: a boundary temporal context refinement-based fully convolutional network for sleep staging with single-channel EEG
2023-07-13, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/acdb46
PMID:37267988
|
研究论文 | 提出一种基于边界时序上下文优化的全卷积网络BTCRSleep,用于单通道脑电信号的睡眠分期 | 引入边界时序上下文优化模块,捕获睡眠阶段转换时的脑电波特征,解决传统方法在跨时段脑电波特征提取中的边界信息丢失问题 | NA | 提高单通道脑电信号睡眠分期的性能 | 睡眠脑电信号 | 医疗人工智能 | 睡眠障碍 | 脑电图(EEG) | 全卷积网络 | 单通道脑电信号 | 四个公共数据集:Sleep-EDF Expanded 2013版和2018版、Sleep Heart Health Study、CAP Sleep Database | NA | 全卷积网络 | 准确率,kappa分数 | NA |
| 112 | 2025-10-05 |
CS-based multi-task learning network for arrhythmia reconstruction and classification using ECG signals
2023-07-05, Physiological measurement
IF:2.3Q3
DOI:10.1088/1361-6579/acdfb5
PMID:37336244
|
研究论文 | 提出一种结合压缩感知与卷积神经网络的多任务网络CSML-Net,用于心电信号的压缩重建与心律失常分类 | 首次将压缩感知与深度学习结合,在压缩域同时实现心电信号重建和心律失常分类的多任务学习框架 | 仅在MIT-BIH心律失常数据集上进行验证,未在其他数据集测试泛化能力 | 解决长期ECG监测产生的大量数据对有限带宽和实时系统的挑战 | 心电图信号和心律失常分类 | 机器学习 | 心血管疾病 | 压缩感知技术 | CNN | 心电信号 | MIT-BIH心律失常数据集 | NA | 多尺度特征模块的多任务网络 | 重建质量, 分类性能 | NA |
| 113 | 2025-10-06 |
A deep learning image analysis method for renal perfusion estimation in pseudo-continuous arterial spin labelling MRI
2023-12, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2023.09.007
PMID:37776961
|
研究论文 | 提出一种基于深度学习图像分析的肾脏灌注自动估计方法 | 使用无对比剂伪连续动脉自旋标记MRI图像进行肾脏移植评估和灌注估计 | 仅使用16名移植患者数据进行实验,样本量较小 | 开发肾脏灌注自动估计方法用于移植后评估 | 肾脏移植患者的肾脏组织 | 医学影像分析 | 肾脏疾病 | 伪连续动脉自旋标记(PCASL) MRI,T加权MRI | 深度学习 | MRI图像 | 16名移植患者 | NA | NA | Dice相似系数 | NA |
| 114 | 2025-10-06 |
Physics-informed deep learning for T2-deblurred superresolution turbo spin echo MRI
2023-12, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.29814
PMID:37578085
|
研究论文 | 提出一种融合物理信息的深度学习超分辨率方法,用于T2去模糊的涡轮自旋回波MRI图像重建 | 首次在深度学习超分辨率中引入物理真实的T2权重退化模型,改进了传统k空间截断方法的局限性 | 方法主要针对涡轮自旋回波MRI序列,在其他MRI序列上的适用性需要进一步验证 | 开发能够加速MRI扫描时间的超分辨率重建方法 | 基因工程小鼠胚胎模型的涡轮自旋回波MRI图像 | 医学影像分析 | NA | 涡轮自旋回波MRI | GAN | MRI图像 | 6-7个小鼠胚胎的500层图像体积 | NA | 生成对抗网络 | 定量成像指标, 专家评分 | NA |
| 115 | 2025-10-06 |
Social Media Images Can Predict Suicide Risk Using Interpretable Large Language-Vision Models
2023-11-29, The Journal of clinical psychiatry
IF:4.5Q1
DOI:10.4088/JCP.23m14962
PMID:38019588
|
研究论文 | 本研究开发了一个可解释的预测模型,利用社交媒体图像预测临床有效的自杀风险 | 首次证明公开可用的图像可用于预测经过验证的自杀风险,结合理论驱动特征与自下而上方法,提供简单灵活的策略 | 数据来源于2018年特定时间段,样本量相对有限,仅基于Facebook用户数据 | 开发可解释的自杀风险预测模型,解决现有AI方法的黑箱问题 | 841名Facebook用户上传的177,220张图像 | 多模态学习 | 心理健康疾病 | 对比语言-图像预训练(CLIP) | 逻辑回归,深度学习 | 图像 | 841名用户,177,220张图像 | CLIP | CLIP,逻辑回归 | AUC, Cohen's d | NA |
| 116 | 2025-10-06 |
Application of artificial intelligence in the diagnosis of hepatocellular carcinoma
2023-Sep, eGastroenterology
DOI:10.1136/egastro-2023-100002
PMID:39944000
|
综述 | 探讨人工智能在肝细胞癌放射学诊断中的最新应用进展 | 系统总结AI在HCC放射诊断中的优势,包括降低诊断变异性和优化数据分析 | 尚未在临床实践中常规应用,需要进一步研究和验证 | 评估人工智能在肝细胞癌诊断中的应用价值 | 肝细胞癌患者的放射学影像数据 | 计算机视觉 | 肝癌 | 放射学成像 | 深度学习,神经网络 | 医学影像 | NA | NA | NA | NA | NA |
| 117 | 2025-10-06 |
Comparison of evaluation metrics of deep learning for imbalanced imaging data in osteoarthritis studies
2023-09, Osteoarthritis and cartilage
IF:7.2Q1
DOI:10.1016/j.joca.2023.05.006
PMID:37209993
|
研究论文 | 比较骨关节炎研究中不平衡影像数据深度学习评估指标的适用性 | 首次系统比较不同类别不平衡程度下ROC和PR曲线等评估指标在骨关节炎深度学习研究中的表现差异 | 仅基于单一数据集(骨关节炎倡议研究)的MRI数据,未验证其他类型医学影像数据 | 评估深度学习模型在不平衡医学影像数据中的性能表现 | 骨关节炎患者的膝关节MRI影像和骨髓病变检测 | 计算机视觉 | 骨关节炎 | MRI成像 | 深度学习 | 医学影像 | 2467名参与者的2996个膝关节MRI | NA | NA | ROC-AUC, PR-AUC, 敏感性, 特异性 | NA |
| 118 | 2025-10-06 |
Addressing Deep Learning Model Calibration Using Evidential Neural Networks And Uncertainty-Aware Training
2023-Apr-18, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/ISBI53787.2023.10230515
PMID:39253557
|
研究论文 | 本研究探讨使用证据神经网络和不确定性感知训练来改善深度学习模型校准性能 | 首次将证据神经网络和不确定性感知训练结合使用,并在复杂医学影像任务中验证其对模型校准的改进效果 | 仅在两个分类任务上进行实验,需要更多任务验证通用性 | 改善深度学习模型在医学影像分类中的校准性能,提高临床医生对模型的信任度 | MNIST手写数字和相位对比心脏磁共振图像的伪影检测 | 计算机视觉 | 心血管疾病 | 心脏磁共振成像 | 深度学习模型 | 图像 | NA | NA | 证据神经网络 | 模型校准指标 | NA |
| 119 | 2025-10-06 |
Predictive modelling of brain disorders with magnetic resonance imaging: A systematic review of modelling practices, transparency, and interpretability in the use of convolutional neural networks
2023-12-15, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.26521
PMID:37909364
|
系统综述 | 对使用卷积神经网络和MRI数据进行脑部疾病预测建模的研究实践、透明度和可解释性进行系统性评估 | 首次系统评估脑部疾病CNN预测建模的方法学差异,并提出改善临床整合的具体建议 | 仅纳入55项研究,可能未涵盖所有相关文献;定性分析可能受主观判断影响 | 评估基于CNN的脑部疾病MRI预测建模的方法学质量并提出改进建议 | 55项使用CNN和MRI数据进行脑部疾病预测建模的研究 | 医学影像分析 | 脑部疾病 | 结构磁共振成像 | CNN | MRI图像 | NA | NA | NA | NA | NA |
| 120 | 2025-10-06 |
Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images
2023-12, Experimental biology and medicine (Maywood, N.J.)
DOI:10.1177/15353702231220664
PMID:38279511
|
研究论文 | 本研究构建并评估了一个基于超声图像的深度学习模型,用于准确区分良恶性甲状腺结节 | 首次将深度学习模型与80名放射科医生进行诊断性能比较,并利用Grad-CAM可视化模型决策过程以增强可解释性 | 诊断准确率有待进一步提高,需要在初级医疗机构中验证辅助诊断价值 | 开发能够准确区分良恶性甲状腺结节的AI诊断工具 | 甲状腺结节的超声图像 | 计算机视觉 | 甲状腺结节 | 超声成像 | CNN | 图像 | 655个独立甲状腺结节的2096张超声图像,独立测试集包含100例 | NA | ResNet | 灵敏度, 特异度, 准确率 | NA |