本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1601 | 2024-09-01 |
A deep learning-enabled smartphone platform for rapid and sensitive colorimetric detection of dimethoate pesticide
2023-Dec, Analytical and bioanalytical chemistry
IF:3.8Q1
DOI:10.1007/s00216-023-04978-z
PMID:37770666
|
research paper | 开发了一种基于深度学习的智能手机平台,用于辅助比色适体生物传感器快速和高灵敏度地检测乐果农药 | 该平台结合了比色生物传感器和基于智能手机的深度学习方法,实现了便携且经济实惠的农药检测工具 | NA | 开发一种快速、高灵敏度的农药检测方法 | 乐果农药的检测 | machine learning | NA | NA | CNN | image | 浓度范围为0-10 μM的乐果溶液 |
1602 | 2024-09-01 |
Deep Learning Algorithm Detects Presence of Disorganization of Retinal Inner Layers (DRIL)-An Early Imaging Biomarker in Diabetic Retinopathy
2023-07-03, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.12.7.6
PMID:37410472
|
研究论文 | 本研究开发并训练了一种基于深度学习的算法,用于在光学相干断层扫描(OCT)图像上检测糖尿病视网膜病变(DR)的早期影像生物标志物——视网膜内层紊乱(DRIL) | 本研究首次展示了基于深度学习的OCT分类算法能够快速自动识别DRIL,有助于在研究和临床决策中筛查DRIL | NA | 开发和训练一种深度学习算法,用于检测OCT图像上的视网膜内层紊乱(DRIL) | 糖尿病视网膜病变(DR)患者 | 计算机视觉 | 糖尿病视网膜病变 | 光学相干断层扫描(OCT) | 卷积神经网络(CNN) | 图像 | 664名患者(5992张B扫描图像来自1201只眼睛) |
1603 | 2024-09-01 |
Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images
2023-Jun-08, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10060699
PMID:37370630
|
研究论文 | 本研究探讨了四种深度学习框架(U-Net、U-NeXt、DeepLabV3+和ConResNet)在冠状MRI中对眼外肌(EOMs)进行多类像素级分割的性能 | 本研究系统比较了影响分割和形态测量准确性的因素,以及深度学习模型在MRI中分割EOMs的变异性 | 研究结果显示分割精度在空间上不同的图像平面有所变化 | 评估和比较四种深度学习框架在MRI中对眼外肌进行分割的性能 | 眼外肌(EOMs)的分割 | 计算机视觉 | NA | 磁共振成像(MRI) | U-Net, U-NeXt, DeepLabV3+, ConResNet | 图像 | 未明确提及样本数量 |
1604 | 2024-08-31 |
Evaluation of the Artificial Intelligence Chatbot on Breast Reconstruction and Its Efficacy in Surgical Research: A Case Study
2023-12, Aesthetic plastic surgery
IF:2.0Q2
DOI:10.1007/s00266-023-03443-7
PMID:37314466
|
研究论文 | 本研究评估了人工智能聊天机器人ChatGPT在乳房重建领域的应用及其在整形外科研究中的效果 | 首次评估ChatGPT在整形外科研究中的准确性和全面性 | ChatGPT在回答中缺乏深度,生成不存在的参考文献,引用错误的期刊和日期,存在学术诚信问题 | 评估ChatGPT在整形外科研究中的适用性 | ChatGPT在乳房重建领域的应用 | 机器学习 | NA | 深度学习 | NA | 文本 | 6个问题 |
1605 | 2024-08-31 |
Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT-Based Body Composition Analysis
2023-12, Annals of neurology
IF:8.1Q1
DOI:10.1002/ana.26775
PMID:37612833
|
研究论文 | 本研究探讨了脂肪减少与肌萎缩侧索硬化症(ALS)患者预后的关系,使用基于深度学习的CT体成分分析软件进行分析 | 首次使用深度学习技术进行CT体成分分析,评估脂肪减少和肌肉减少对ALS患者生存的影响 | 研究为回顾性分析,样本量相对较小,且仅在单一医院进行 | 评估脂肪减少和肌肉减少对ALS患者预后的影响 | 肌萎缩侧索硬化症患者 | 数字病理学 | 神经退行性疾病 | CT | 深度学习 | 图像 | 80名患者(40名男性,平均年龄65.5±9.4岁) |
1606 | 2024-08-31 |
A high-resolution canopy height model of the Earth
2023-Nov, Nature ecology & evolution
IF:13.9Q1
DOI:10.1038/s41559-023-02206-6
PMID:37770546
|
研究论文 | 本文介绍了一种全球冠层高度图,分辨率为10米,基于融合了GEDI LiDAR数据和Sentinel-2卫星图像的深度学习模型 | 开发了一种概率深度学习模型,能够从Sentinel-2图像中检索冠层顶部高度并量化估计的不确定性 | NA | 提供高分辨率的全球冠层高度模型,以支持生态系统管理、气候变化缓解和生物多样性保护 | 全球冠层高度及其在生态系统中的分布 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 全球陆地面积的5%被超过30米的树木覆盖 |
1607 | 2024-08-31 |
Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads
2023-Oct, Computing in cardiology
DOI:10.22489/cinc.2023.047
PMID:39193485
|
研究论文 | 本研究开发并应用了一种深度学习架构,用于检测低左心室射血分数(LVEF),并比较了使用单个导联和整个12导联ECG训练该架构的性能 | 探索了使用单个导联ECG数据进行机器学习分析的可能性,并发现单导联训练的网络与全12导联训练的网络性能相似 | 未提及具体限制 | 开发和比较使用单个导联和整个12导联ECG进行机器学习分析的性能 | 低左心室射血分数(LVEF)的检测 | 机器学习 | 心血管疾病 | 机器学习(ML) | 深度学习 | ECG数据 | 未提及具体样本数量 |
1608 | 2024-08-31 |
Antigen-specific CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans
2023-Sep-15, Research square
DOI:10.21203/rs.3.rs-3304466/v1
PMID:37790414
|
研究论文 | 研究评估了BNT162b2 mRNA疫苗接种后,人类血液和引流淋巴结中针对SARS-CoV-2刺突蛋白的CD4 T细胞的单细胞转录组特征 | 使用新的深度学习方法Trex进行反向表位映射,结合单细胞TCR测序和转录组学来预测抗原特异性 | NA | 探讨SARS-CoV-2感染和mRNA疫苗接种后CD4 T细胞的转录组特征 | 人类血液和引流淋巴结中的刺突特异性CD4 T细胞 | 免疫学 | NA | 单细胞转录组学 | 深度学习 | 转录组数据 | 多个刺突特异性CD4 T细胞克隆型 |
1609 | 2024-08-31 |
Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09568-2
PMID:37067576
|
研究论文 | 本研究开发了基于CT图像的深度学习辅助诊断模型,以帮助放射科医生区分良性和恶性腮腺肿瘤 | 开发的深度学习模型在预测良性和恶性腮腺肿瘤方面优于传统的支持向量机模型 | NA | 开发深度学习辅助诊断模型,以提高放射科医生对腮腺肿瘤的诊断性能 | 良性和恶性腮腺肿瘤的诊断 | 机器学习 | 腮腺肿瘤 | 深度学习 | CNN | 图像 | 573名经组织病理学确认的腮腺肿瘤患者 |
1610 | 2024-08-30 |
A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression
2023-12, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.13319
PMID:37409680
|
研究论文 | 本文通过模拟深度学习模型分析染色体19上的单核苷酸多态性(SNP)交互作用,预测阿尔茨海默病(AD)的风险和疾病进展速率 | 采用了一种新颖的模拟深度学习模型,使用遮挡方法量化每个SNP及其上位效应对AD可能性的影响 | NA | 识别与阿尔茨海默病相关的遗传模式,以构建个性化的治疗策略 | 染色体19上的遗传数据和单核苷酸多态性(SNP) | 机器学习 | 阿尔茨海默病 | 深度学习 | 深度学习模型 | 遗传数据 | 使用了来自阿尔茨海默病神经影像学倡议和阿尔茨海默病影像学与遗传生物标志物数据集的染色体19遗传数据 |
1611 | 2024-08-30 |
Parking Lot Occupancy Detection with Improved MobileNetV3
2023-Sep-03, Sensors (Basel, Switzerland)
DOI:10.3390/s23177642
PMID:37688098
|
研究论文 | 本研究通过优化MobileNetV3模型并结合自定义架构改进,实现了停车场车位占用状态的精确检测 | 引入了卷积块注意力机制和蓝图可分离卷积,相较于传统深度可分离卷积,提升了模型性能 | NA | 提高停车场管理系统中车位占用检测的准确性 | 停车场车位占用状态 | 计算机视觉 | NA | 深度学习 | MobileNetV3 | 视频 | 使用CNRPark-EXT和PKLot数据集进行训练和测试 |
1612 | 2024-08-30 |
Deep learning of image-derived measures of body composition in pediatric, adolescent, and young adult lymphoma: association with late treatment effects
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09587-z
PMID:36988714
|
研究论文 | 本研究使用深度学习方法分析儿童、青少年和年轻成年淋巴瘤患者的标准护理CT图像中的身体成分测量,以评估其对治疗晚期效应的预测价值。 | 本研究首次将深度学习技术应用于半自动分析淋巴瘤患者的身体成分,并评估其与治疗晚期效应的关系。 | 研究为回顾性、单中心研究,样本量相对较小,可能影响结果的普遍性。 | 研究目的是将深度学习方法应用于半自动分析淋巴瘤患者的身体成分,并评估其对治疗晚期效应的预测价值。 | 研究对象为110名儿童、青少年和年轻成年淋巴瘤患者。 | 计算机视觉 | 淋巴瘤 | 深度学习 | 深度学习模型 | 图像 | 110名患者,260个CT图像数据集 |
1613 | 2024-08-30 |
The effect of hepatic steatosis on liver volume determined by proton density fat fraction and deep learning-measured liver volume
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09603-2
PMID:37012546
|
研究论文 | 本研究评估了肝脂肪变性(HS)对肝脏体积的影响,并开发了一种公式来估计校正HS影响的瘦肝体积 | 提出了一个公式来估计校正肝脂肪变性影响的瘦肝体积 | 这是一个回顾性研究,样本仅包括健康的成年肝脏捐赠者 | 评估肝脂肪变性对肝脏体积的影响并开发校正公式 | 肝脂肪变性对肝脏体积的影响 | NA | NA | 磁共振成像(MRI),质子密度脂肪分数(PDFF)测量 | 深度学习算法 | 图像 | 1038名捐赠者(平均年龄31±9岁,689名男性) |
1614 | 2024-08-30 |
Liver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09576-2
PMID:37014405
|
研究论文 | 本文提出了一种基于深度学习的多解码器水脂分离神经网络(MDWF-Net),用于从仅含3个回波的化学位移编码MRI图像中准确估计肝脏质子密度脂肪分数(PDFF)。 | 创新点在于使用多解码器水脂分离神经网络,通过减少回波数量来缩短MR扫描时间,同时保持PDFF估计的准确性。 | NA | 研究目的是通过减少回波数量,缩短MR扫描时间,同时保持肝脏PDFF估计的准确性。 | 研究对象是肝脏PDFF的估计,使用的是化学位移编码MRI图像。 | 机器学习 | NA | MRI | CNN | 图像 | 134名受试者的MRI数据用于训练,14名受试者的数据用于评估。 |
1615 | 2024-08-30 |
Dynamic evolution of brain structural patterns in liver transplantation recipients: a longitudinal study based on 3D convolutional neuronal network model
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09604-1
PMID:37014408
|
研究论文 | 本研究评估了肝移植受者在手术前后大脑结构模式的变化,使用基于深度学习的神经解剖生物标志物进行纵向测量。 | 采用3D卷积神经网络模型来预测大脑年龄,并通过网络遮挡敏感性分析确定各网络在年龄预测中的重要性。 | NA | 评估肝移植受者大脑健康的动态演变过程。 | 肝移植受者的大脑结构模式。 | 机器学习 | NA | 3D卷积神经网络 | 3D-CNN | MRI图像 | 3609名健康个体和60名肝移植受者及134名对照组 |
1616 | 2024-08-30 |
Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09590-4
PMID:37052658
|
研究论文 | 本文建立了一种基于多参数深度学习模型的全自动无创脑膜瘤分级系统,并进行了分割 | 采用多参数三维U-net和ResNet构建的两阶段深度学习分级模型,结合T1C和T2图像,提高了分级和分割的准确性 | NA | 开发一种稳健的、可解释的多参数深度学习模型,用于自动无创脑膜瘤分级和分割 | 257名经病理证实的脑膜瘤患者(162例低级别,95例高级别)的脑部MRI图像 | 机器学习 | 脑膜瘤 | MRI | U-net, ResNet | 图像 | 训练集257例,验证集61例 |
1617 | 2024-08-30 |
Risk estimation for idiopathic normal-pressure hydrocephalus: development and validation of a brain morphometry-based nomogram
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09612-1
PMID:37059905
|
研究论文 | 开发并验证了一种基于脑部形态测量的诺模图,用于预测特发性正常压力脑积水 | 利用深度学习技术进行脑部分割和三维体积测量,开发了一种结合高凸紧密度、胼胝体角度小于90°和标准化侧脑室体积的诺模图 | NA | 开发和验证一种基于MRI特征的诺模图,用于预测特发性正常压力脑积水 | 60岁及以上被临床诊断为特发性正常压力脑积水、帕金森病、阿尔茨海默病或健康对照的患者 | NA | 特发性正常压力脑积水 | MRI | 深度学习 | 图像 | 452名患者(平均年龄±标准差,73.2±6.5岁;200名男性) |
1618 | 2024-08-30 |
Deep learning-based diagnosis of osteoblastic bone metastases and bone islands in computed tomograph images: a multicenter diagnostic study
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09573-5
PMID:37060446
|
研究论文 | 本研究开发并验证了一种基于CT图像的深度学习(DL)模型,用于区分骨岛和成骨性骨转移瘤 | 采用三切片CT图像输入的2.5D深度学习模型在分类硬化性骨病变方面优于2D模型 | NA | 开发和验证一种深度学习模型,用于区分骨岛和成骨性骨转移瘤 | 硬化性骨病变(SBLs)患者 | 计算机视觉 | 骨转移瘤 | 深度学习 | 2D和2.5D深度学习模型 | CT图像 | 共使用了1918个SBLs样本,涉及728名患者(站点1),122个SBLs样本,涉及71名患者(站点2),71个SBLs样本,涉及47名患者(站点3) |
1619 | 2024-08-30 |
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09827-2
PMID:37338554
|
研究论文 | 本文使用卷积神经网络实现喉下癌(HPC)在MRI上的全自动分割和放射组学特征提取 | DeepLab V3+模型在自动分割和放射组学特征提取方面优于U-Net模型,特别是在小肿瘤体积的分割上表现更佳 | NA | 研究目的是利用深度学习技术实现喉下癌肿瘤在MRI上的自动分割和放射组学特征提取 | 研究对象为222名喉下癌患者,其中178名用于训练,44名用于测试 | 计算机视觉 | 喉下癌 | MRI | CNN | 图像 | 222名喉下癌患者 |
1620 | 2024-08-30 |
Neural network combining with clinical ultrasonography: A new approach for classification of salivary gland tumors
2023-08, Head & neck
DOI:10.1002/hed.27396
PMID:37222027
|
研究论文 | 本文探讨了深度学习方法在唾液腺肿瘤超声图像分类中的应用 | 首次比较了超声训练模型与计算机断层扫描或磁共振成像训练模型的准确性 | 研究为回顾性,样本量有限 | 比较不同成像技术训练模型在唾液腺肿瘤分类中的准确性 | 唾液腺肿瘤的超声图像 | 机器学习 | NA | 深度学习 | 神经网络 | 图像 | 638名患者,包括558例良性肿瘤和80例恶性肿瘤 |