本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1761 | 2024-08-05 |
Deep Clustering of Electronic Health Records Tabular Data for Clinical Interpretation
2023-Dec, ... IEEE International Conference on Telecommunications and Photonics. IEEE International Conference on Telecommunications and Photonics
DOI:10.1109/ictp60248.2023.10490723
PMID:39027675
|
研究论文 | 本研究提出了一种基于临床变量的患者分层策略,并评估了聚类性能。 | 创新点在于提出了一种基于临床变量进行患者分层的新策略,并采用深度学习方法改善了聚类效果。 | 本研究局限于使用传统聚类算法进行比较,未涉及其他复杂模型的应用。 | 本研究旨在提高对患者数据的理解和分析,特别是在没有明确诊断标签的情况下。 | 研究对象为高血压患者群体,通过聚类分析识别了不同患者簇。 | 机器学习 | NA | 深度学习 | NA | 表格数据 | NA |
1762 | 2024-08-05 |
Generative adversarial network constrained multiple loss autoencoder: A deep learning-based individual atrophy detection for Alzheimer's disease and mild cognitive impairment
2023-02-15, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.26146
PMID:36394351
|
研究论文 | 本文提出了一种生成对抗网络约束的多损失自编码器框架用于阿尔茨海默病和轻度认知障碍的个体萎缩检测 | 提出了一种新颖的GANCMLAE模型,能够精确描述个体大脑萎缩模式并具有良好的临床应用潜力 | 尚缺乏对其他人群或更广泛样本的验证,以评估模型的通用性 | 研究个体大脑萎缩模式,以提高阿尔茨海默病和轻度认知障碍的精准医学 | 正常对照组与阿尔茨海默病和轻度认知障碍患者 | 数字病理学 | 阿尔茨海默病 | 生成对抗网络 | 自编码器 | 图像 | 来自阿尔茨海默病神经影像学倡议队列的正常对照组和Xuanwu队列的数据 |
1763 | 2024-08-05 |
ASD-GResTM: Deep Learning Framework for ASD classification using Gramian Angular Field
2023-Dec, Proceedings. IEEE International Conference on Bioinformatics and Biomedicine
DOI:10.1109/bibm58861.2023.10385743
PMID:39021439
|
研究论文 | 本文设计并开发了一个深度学习框架,用于基于功能磁共振成像(fMRI)数据分类自闭症谱系障碍(ASD)与神经典型大脑 | 引入了一种新策略,将提取的时间序列数据转化为Gramian Angular Field (GAF),并锁定了数据中的时间和空间模式 | 未提及特定的局限性 | 旨在通过深度学习方法提高自闭症的分类准确性 | 基于功能磁共振成像(fMRI)数据的自闭症与神经典型脑的分类 | 计算机视觉 | 自闭症谱系障碍 | fMRI | 卷积神经网络(CNN)及长短期记忆网络(LSTM) | 图像 | 使用了公开的ABIDE-I基准数据集进行训练、验证和测试 |
1764 | 2024-08-05 |
Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques
2023-12-21, The journal of physical chemistry. B
DOI:10.1021/acs.jpcb.3c05306
PMID:38084046
|
研究论文 | 本研究通过整合基于配体和基于结构的药物发现策略,利用迁移学习和深度学习技术提高阿片类药物的生物活性预测 | 本文创新性在于应用迁移学习构建稳健的深度学习模型,以增强对每种阿片受体亚型的配体生物活性预测 | 本研究的局限性在于可能仍面临训练样本不足的问题,影响预测性能 | 研究旨在寻找更好的阿片类药物,降低成瘾潜力,以应对阿片类药物危机 | 研究对象为阿片类药物及其对应的受体亚型 | 机器学习 | NA | 深度学习 | NA | 生物活性数据 | 大型生物活性数据集 |
1765 | 2024-08-05 |
Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning
2023-12-21, The journal of physical chemistry. B
DOI:10.1021/acs.jpcb.3c04843
PMID:38081185
|
评论 | 本文探讨了在分子动力学中应用的自适应采样算法 | 提出了一种仅通过在特定种子上重新启动MD轨迹来增强采样的自适应采样算法 | 本文讨论了自适应采样方法的不足之处 | 研究旨在改善分子动力学中蛋白质构象变化的采样 | 重点关注自适应采样算法及其在真实系统中的应用 | 计算机视觉 | NA | 深度学习技术 | NA | NA | NA |
1766 | 2024-08-05 |
Unlocking the Potential: Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks
2023-Aug-08, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.3c00355
PMID:37463673
|
综述 | 本文讨论了有机分子的还原和氧化电位预测的现代技术 | 探讨了从线性拟合到神经网络的不同预测方法,超越常规的第一性原理计算和热力学循环 | 未详细讨论每种方法的适用范围和具体局限性 | 研究有机分子的还原氧化行为预测方法 | 还原活性有机分子及其在不同应用中的表现 | 化学 | NA | 机器学习 | 神经网络 | 数据集 | 目前可用的还原活性有机分子数据集及其实验和计算性质 |
1767 | 2024-08-05 |
Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques
2023-Aug-07, bioRxiv : the preprint server for biology
DOI:10.1101/2023.08.04.552065
PMID:37609329
|
研究论文 | 本文探讨了通过结合基于配体和基于结构的药物发现策略与迁移和深度学习技术来提高阿片类生物活性预测的有效性 | 创新点在于使用结合的分子描述符构建稳健的深度学习模型,以提升阿片类配体在各个OR亚型上的生物活性预测 | 研究可能面临样本不足以实现充分预测性能的问题 | 旨在发现更好的阿片类药物以降低成瘾潜力 | 研究对象为阿片受体(OR)亚家族中的配体 | 计算机视觉 | NA | 深度学习 | NA | 分子描述符 | NA |
1768 | 2024-08-05 |
Structure-based prediction of T cell receptor:peptide-MHC interactions
2023-Jan-20, eLife
IF:6.4Q1
DOI:10.7554/eLife.82813
PMID:36661395
|
研究论文 | 本文评估了基于结构的模型在T细胞受体与肽-MHC相互作用预测中的潜力 | 利用深度神经网络的AlphaFold模型生成TCR:肽-MHC相互作用的结构模型 | 尽管当前的预测准确性较高,但在广泛的实际应用中仍需大量工作 | 研究T细胞受体对肽-MHC相互作用特异性的预测 | T细胞受体与肽-MHC相互作用 | 计算机视觉 | NA | 深度学习 | AlphaFold | NA | NA |
1769 | 2024-08-07 |
Exploring infection clinicians' perceptions of bias in Large Language Models (LLMs) like ChatGPT: A deep learning study
2023-12, The Journal of infection
IF:14.3Q1
DOI:10.1016/j.jinf.2023.09.006
PMID:37743022
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1770 | 2024-08-05 |
Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network
2023-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.10.4.044502
PMID:37465592
|
研究论文 | 本研究提出了一种几何深度学习模型,用于缺血性脑卒中的病灶分割。 | 本文创新性地使用了全卷积图网络,并结合样条卷积和图结构特征来改进缺血性脑卒中病灶的预测。 | 本研究没有使用优化的训练方法,如数据增强或补丁处理,这可能影响模型表现的进一步提升。 | 研究旨在提高缺血性脑卒中病灶的分割准确性,以便为临床干预提供支持。 | 研究对象为缺血性脑卒中病灶的CT灌注参数图像数据。 | 计算机视觉 | 脑卒中 | CT灌注参数 | 全卷积图网络 | 图像 | NA |
1771 | 2024-08-05 |
Detection of Intracerebral Hemorrhage Using Low-Field, Portable Magnetic Resonance Imaging in Patients With Stroke
2023-11, Stroke
IF:7.8Q1
DOI:10.1161/STROKEAHA.123.043146
PMID:37795593
|
研究论文 | 本研究探讨了在中风患者中使用低场便携式磁共振成像(pMRI)检测自发性脑内出血的敏感性和特异性 | 该研究首次将深度学习重建算法与临床信息结合,用于提高便携式磁共振成像对脑内出血的检测准确性 | 研究仅在Yale New Haven医院进行,样本数量相对较少,可能影响结果的普适性 | 本研究旨在评估低场pMRI在自发性脑内出血检测中的效果 | 对189例中风患者的pMRI检查进行了评估 | 数字病理学 | 脑血管疾病 | 低场磁共振成像(pMRI) | 深度学习算法 | 医学影像 | 189例(38例脑内出血,89例急性缺血性中风,8例蛛网膜下腔出血,3例原发性脑室出血,51例无颅内异常) |
1772 | 2024-08-05 |
Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43898-1_14
PMID:39005889
|
研究论文 | 文章提出了一种新的双向映射模型,通过对比学习减少脑结构与功能之间单向映射的偏差 | 创新点在于提出了双向映射模型BMCL,解决了单向映射方法的偏差问题 | 研究中只使用了两个公开数据集,可能限制了结果的普遍性 | 探讨脑结构与功能之间的相互作用,并识别不同临床表型和脑疾病的潜在生物标志物 | 使用临床表型和神经退行性疾病的预测作为研究对象 | 计算机视觉 | 神经退行性疾病 | 对比学习 | BMCL | 多模态神经影像数据 | 使用了两个公开数据集(HCP和OASIS)中的样本 |
1773 | 2024-08-05 |
Disentangling accelerated cognitive decline from the normal aging process and unraveling its genetic components: A neuroimaging-based deep learning approach
2023-Sep-08, Research square
DOI:10.21203/rs.3.rs-3328861/v1
PMID:37720047
|
研究论文 | 该文章介绍了一种基于深度学习的方法,用于区分正常衰老过程中的认知下降与阿尔茨海默病相关的加速认知下降 | 提出了一种新的双损失Siamese ResNet网络,能够提取细粒度神经影像信息,并识别新的遗传变异rs144614292 | 研究样本主要来源于ADNI,对其他人群的适用性需要进一步验证 | 探讨加速认知下降与自然衰老过程之间的关系及其遗传基础 | 针对1,313名个体的纵向结构磁共振成像(MRI)数据进行分析 | 数字病理学 | 老年痴呆症 | MRI | Siamese ResNet | 影像数据 | 1,313名个体,训练于414名认知正常的人群 |
1774 | 2024-08-05 |
3D Biological/Biomedical Image Registration with enhanced Feature Extraction and Outlier Detection
2023-Sep, ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine
DOI:10.1145/3584371.3612965
PMID:39006863
|
研究论文 | 本文提出了一种用于三维生物医学图像配准的新方法 | 结合了传统和深度学习技术用于特征提取,并采用自适应最大似然估计样本一致性方法进行异常值检测 | NA | 提高三维图像配准的精度和效率 | 3D显微镜图像和医学图像 | 计算机视觉 | NA | SIFT, ResNet50 | 深度神经网络 | 图像 | 使用3D MRI和3D多重显微图像的序列切片 |
1775 | 2024-08-05 |
Osteoarthritis year in review 2022: imaging
2023-08, Osteoarthritis and cartilage
IF:7.2Q1
DOI:10.1016/j.joca.2023.03.005
PMID:36924919
|
综述 | 这篇叙述性综述总结了2021年4月1日至2022年3月31日间关于骨关节炎(OA)成像的原创研究 | 文章重点强调了人工智能在OA成像应用中的加速发展,特别是在预测模型的开发和小梁纹理分析中的应用 | 仅考虑了英文的在体人类研究,未涉及其他语言或动物研究 | 阐述与骨关节炎成像相关的研究进展 | 关注膝关节、髋关节和手关节等不同关节的成像研究 | 数字病理学 | 骨关节炎 | 磁共振成像/MRI | 人工智能/AI | 成像 | NA |
1776 | 2024-08-05 |
iQDeep: an integrated web server for protein scoring using multiscale deep learning models
2023-07-15, Journal of molecular biology
IF:4.7Q1
DOI:10.1016/j.jmb.2023.168057
PMID:37356909
|
研究论文 | 本文介绍了一个集成的网络服务器iQDeep,用于蛋白质评分,采用多尺度深度学习模型 | iQDeep提供了一个独立且开放访问的蛋白质评分系统,针对多种预测建模场景进行了优化 | NA | 旨在提供一个可靠的蛋白质评分方法,提高蛋白质结构预测的准确性 | 主要研究对象为蛋白质及其结构预测 | 数字病理学 | NA | 多尺度深度残差神经网络(ResNets) | 深度残差神经网络 | 结构数据 | 在多个CASP实验中进行了广泛测试和比较 |
1777 | 2024-08-05 |
Genetics and mechanisms of thoracic aortic disease
2023-03, Nature reviews. Cardiology
DOI:10.1038/s41569-022-00763-0
PMID:36131050
|
综述 | 本文探讨了胸主动脉疾病的遗传学和机制 | 文章介绍了利用深度学习等新技术快速定义主动脉特征的能力,并整合这些新观察到的遗传数据 | 胸主动脉疾病相较于其他心血管病症的相对低发病率限制了大规模遗传关联的识别 | 研究主动脉疾病的遗传机制及其生物学理解 | 胸主动脉疾病的遗传因素 | 机器学习 | 心血管疾病 | 机器学习 | 深度学习 | 影像数据 | NA |
1778 | 2024-08-05 |
PINNet: a deep neural network with pathway prior knowledge for Alzheimer's disease
2023, Frontiers in aging neuroscience
IF:4.1Q2
DOI:10.3389/fnagi.2023.1126156
PMID:37520124
|
研究论文 | 提出了一种基于通路信息的神经网络PINNet,以预测阿尔茨海默病患者并分析血液和大脑的转录组特征 | 通过整合来自基因本体或京都基因组百科全书数据库的通路先验知识,提升了模型的可解释性并有助于识别阿尔茨海默病相关生物标志物 | 没有详细描述模型在其他类型样本上的通用性和适用性 | 开发一种能够识别阿尔茨海默病相关转录组特征的深度学习模型 | 研究对象为阿尔茨海默病患者的血液和大脑转录组特征 | 机器学习 | 阿尔茨海默病 | 深度学习 | 深度神经网络(DNN) | 基因表达 | NA |
1779 | 2024-08-05 |
Deep learning classification of ex vivo human colon tissues using spectroscopic OCT
2023-Sep-06, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.04.555974
PMID:37732221
|
研究论文 | 本文提出了一种基于光谱光学相干断层扫描的方法用于分类异体人类结肠组织。 | 创新性地结合了深度学习架构与光谱OCT技术,提升了结肠组织分类的准确性。 | 研究仅限于结肠上皮组织,不一定适用于其他组织类型。 | 提高结直肠癌筛查的效率和效果。 | 分析经过活检的结肠上皮组织样本。 | 数字病理学 | 结肠癌 | 光谱光学相干断层扫描(OCT) | 深度学习架构,LSTM,KNN | 组织样本 | 活检的结肠上皮组织样本 |
1780 | 2024-08-05 |
EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings
2023-Aug, Proceedings of machine learning research
PMID:38988337
|
研究论文 | 我们介绍了解释性分析系统实验室(EASL)框架,这是一种用于临床机器学习工具开发、实施和评估的端到端解决方案 | EASL框架集成了模型开发、实施和评估的资源,为临床环境中的机器学习应用提供全面支持 | NA | 本研究旨在促进临床机器学习工具的开发与评估 | 设计和评估医学影像的深度学习分类器 | 机器学习 | NA | 深度学习 | NA | 医学影像 | NA |