深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 2257 篇文献,本页显示第 1941 - 1960 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1941 2024-08-05
Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes
2023-Feb-01, Biomedical optics express IF:2.9Q2
研究论文 本文提出了一种深度学习框架,用于自动分割适应性光学光学相干断层扫描图像中的锥细胞 该方法实现了从传统人工标记到自动化的3-D体积数据分析,达到人类水平的性能 NA 自动化测量视网膜神经退行性疾病中光受体细胞的形态 健康和疾病参与者的光受体细胞 数字病理学 视网膜神经退行性疾病 适应性光学光学相干断层扫描 深度学习 3-D图像 涉及健康和疾病参与者的AO-OCT扫描,具体样本大小未提供
1942 2024-08-05
Multimodal Deep Learning Model Unveils Behavioral Dynamics of V1 Activity in Freely Moving Mice
2023-Dec, Advances in neural information processing systems
PMID:39005944
研究论文 本文介绍了一种多模态递归神经网络,用于解释自由移动小鼠的V1活动 引入了一种整合视线相关视觉输入和行为及时间动态的新模型,揭示了小鼠V1的行为变量混合选择性 模型的应用可能局限于特定的行为状态和视觉输入类型 研究自由移动小鼠的V1活动与自然视觉输入及行为变量之间的关系 自由移动的小鼠及其视觉皮层活动 计算机视觉 NA 递归神经网络 多模态递归神经网络 视觉数据 NA
1943 2024-08-05
Real-time guidance by deep learning of experienced operators to improve the standardization of echocardiographic acquisitions
2023-Sep, European heart journal. Imaging methods and practice
研究论文 本文研究实时深度学习指导的经验丰富的超声技师改善心脏超声采集标准化的效果 通过实时深度学习指导超声技师,提高心脏超声采集的标准化程度 本文未评估由经验较少的操作员使用深度学习指导的影响 旨在改善心脏超声的标准化,以减少操作员之间的变异性 88名心律正常的患者,进行心脏超声检查 医学影像学 心血管疾病 深度学习 NA 超声波影像 88名患者
1944 2024-08-07
Deep learning-based computed tomography quantification of left ventricular mass
2023-Sep, European heart journal. Imaging methods and practice
NA NA NA NA NA NA NA NA NA NA NA NA
1945 2024-08-05
Multimodal Deep Learning Model Unveils Behavioral Dynamics of V1 Activity in Freely Moving Mice
2023-May-30, bioRxiv : the preprint server for biology
研究论文 本研究介绍了一种多模态递归神经网络,用于解释自由移动小鼠的V1活动 提出了一种新的多模态深度学习模型,能够结合视觉输入与行为和时间动态来预测小鼠视觉皮层的活动 该研究结果可能仅适用于小鼠,不适用于其他物种的视觉皮层活动预测 探讨小鼠视觉皮层中自然视觉输入与行为变量如何整合以产生神经反应 自由移动小鼠的视觉皮层V1活动 计算机视觉 NA 深度卷积神经网络 (CNN) 和递归神经网络 递归神经网络 视觉数据 自由移动小鼠的行为数据
1946 2024-08-05
Real-time guiding by deep learning during echocardiography to reduce left ventricular foreshortening and measurement variability
2023-May, European heart journal. Imaging methods and practice
研究论文 本文探讨了在超声心动图过程中使用深度学习进行实时指导以减少左心室缩短和测量变异性。 研究首次将实时深度学习指导应用于超声心动图,以提高图像标准化和降低测量变异性。 实时指导对经验丰富的操作员间变异性的影响较小。 研究实时深度学习指导在超声心动图中对左心室缩短和观察者间变异性的影响。 纳入88名在窦律下进行超声心动图检查的患者。 数字病理学 心血管疾病 深度学习 NA 图像 88名患者
1947 2024-08-05
Fully automatic estimation of global left ventricular systolic function using deep learning in transoesophageal echocardiography
2023-May, European heart journal. Imaging methods and practice
研究论文 本研究开发了一种利用深度学习实现完全自动化的左心室收缩功能评估方法。 创新点在于通过深度学习实现心脏超声图像的完全自动化评估,从而提高了监测速度和再现性。 本研究的限制在于样本来自185名患者,结果需在更多临床背景下进一步验证。 研究的目的是临床验证自动化MAPSE在心脏病患者中的有效性。 研究对象为185名未选择图像质量的心脏病患者。 数字病理学 心脏病 深度学习 NA 视频 185名心脏病患者
1948 2024-08-05
Siam-VAE: A hybrid deep learning based anomaly detection framework for automated quality control of head CT scans
2023-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 提出了一种基于深度学习的框架,用于对头部CT扫描进行自动质量控制 提出了一种混合模型,结合变分自编码器和孪生神经网络,利用弱标签增强标准异常检测技术 需要大量注释数据进行有效训练,且存在类不平衡和弱标签问题 开发能够分类CT扫描为可用或不可用质量的深度学习框架 头部CT扫描的质量控制 计算机视觉 NA 深度学习 变分自编码器和孪生神经网络 图像 NA
1949 2024-08-05
Automatized Detection of Periodontal Bone Loss on Periapical Radiographs by Vision Transformer Networks
2023-Nov-29, Diagnostics (Basel, Switzerland)
研究论文 本研究评估了利用视觉变换器网络自动检测牙周骨丧失的模型 引入了视觉变换器网络来替代传统卷积神经网络用于牙周骨丧失检测 需要更大且经过人工注释的图像数据集来进一步优化诊断性能 评估各种模型在牙周骨丧失自动检测中的表现 21,819张去标识化的根尖放射影像 计算机视觉 牙周病 视觉变换器网络 ViT, BEiT, DeiT 图像 21,819张根尖放射影像
1950 2024-08-05
The role of deep learning for periapical lesion detection on panoramic radiographs
2023-Nov, Dento maxillo facial radiology
研究论文 本研究旨在使用深度学习自动检测全景放射片上的根尖病变 采用了10种不同的深度学习检测框架,结果显示深度学习模型在检测根尖病变方面表现出色 未提及具体限制 研究深度学习在全景放射片根尖病变检测中的应用 使用454个对象在357张全景放射片上进行标记和检测 计算机视觉 NA 深度学习 RetinaNet 图像 454个对象,357张全景放射片
1951 2024-08-05
Deep learning and clustering approaches for dental implant size classification based on periapical radiographs
2023-10-06, Scientific reports IF:3.8Q1
研究论文 本研究探讨了两种人工智能方法用于基于根尖影像自动分类牙种植体的直径和长度 提出将深度学习和聚类分析结合用于牙种植体尺寸分类,并使用预训练的VGG16模型进行微调 AI模型需在多中心数据上进行验证以用于临床应用 旨在自动化牙种植体尺寸的分类,提高分类准确性 基于根尖影像的牙种植体直径和长度 机器学习 NA 深度学习和聚类分析 VGG16和k-means++ 图像 NA
1952 2024-08-05
The use of deep learning in medical imaging to improve spine care: A scoping review of current literature and clinical applications
2023-Sep, North American Spine Society journal
综述 本文评估了深度学习在脊柱影像学中的当前文献和临床应用 提供了深度学习在脊柱护理中的最新应用情况和研究发现 未能全面覆盖所有相关研究,且只有15%的模型经过外部验证 探讨深度学习在脊柱影像学中的使用情况和有效性 评估脊柱影像学中深度学习算法的应用和临床效果 医学影像 脊柱疾病 深度学习 U-Net和ResNet 文献数据 365项研究,总样本量232,394名患者
1953 2024-08-05
A deep learning framework to scale linear facial measurements to actual size using horizontal visible iris diameter: a study on an Iranian population
2023-08-23, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种深度学习工具,通过虹膜直径对人脸图像进行线性测量的校准 提出使用虹膜的水平可见直径作为自动校正图像放大比例的参考标志 研究仅在伊朗人群中进行,可能无法推广到其他种群 旨在提高面部图像测量的精度以支持临床评估 研究对象为94名受试者的面部图像 计算机视觉 NA 深度学习 NA 图像 94个受试者
1954 2024-08-05
Investigation of the best effective fold of data augmentation for training deep learning models for recognition of contiguity between mandibular third molar and inferior alveolar canal on panoramic radiographs
2023-Jul, Clinical oral investigations IF:3.1Q1
研究论文 本研究旨在使用全景放射影像训练深度学习模型,以识别下颌第三磨牙与下 alveolar 管之间的连续性,并探索最佳的数据增强折数 该研究探讨了在训练深度学习模型时,数据增强不同折数对模型识别性能的影响 不同增强折数间虽然没有显著差异,但最高的AUC并没有在所有模型中表现出一致性 研究旨在提高深度学习模型识别下颌第三磨牙与下 alveolar 管之间连续性的能力 研究对象为1800张经过裁剪的下颌第三磨牙影像 数字病理学 NA 深度学习模型 AlexNet, VGG-16, GoogLeNet 图像 1800张下颌第三磨牙裁剪影像
1955 2024-08-05
Impact of Noisy Labels on Dental Deep Learning-Calculus Detection on Bitewing Radiographs
2023-Apr-23, Journal of clinical medicine IF:3.0Q1
研究论文 本研究评估了标签噪声对牙科深度学习中计算石检测的影响 探讨了不同标签不一致性对模型性能的影响,特别是在口腔X光图像上 只分析了特定的数据集,无法推广到所有类型的医学图像 评估数据标签不一致性对牙科计算石检测模型性能的影响 牙科X光图像中的计算石标注数据 计算机视觉 NA YOLOv5 目标检测网络 医学图像 2584张咬翼X光图像
1956 2024-08-05
Classification of Alzheimer's disease stages from magnetic resonance images using deep learning
2023, PeerJ. Computer science
研究论文 本文提出了一种基于深度学习的方法,通过磁共振成像(MRI)分类阿尔茨海默病(AD)的不同阶段 创新之处在于使用深度学习和多种网络架构(如EfficientNet、DenseNet和视觉变换器)来提高AD早期检测的精确度 研究的限制在于样本大小和样本的特定来源,可能影响结果的通用性 本研究旨在利用深度学习技术提高阿尔茨海默病早期诊断的准确性 研究对象为来自阿尔茨海默病神经影像倡议和开放获取成像研究系列数据库的MRI图像 计算机视觉 阿尔茨海默病 磁共振成像(MRI) 3D卷积神经网络 图像 使用了来自多个数据库的特定MRI图像集,样本大小未明确说明
1957 2024-08-05
Patient-level thyroid cancer classification using attention multiple instance learning on fused multi-scale ultrasound image features
2023, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:38222341
研究论文 该文章提出了一种基于注意力的多实例学习模型用于甲状腺癌的患者级分类。 创新性地结合了不同超声图像帧的全局和局部特征进行患者级恶性肿瘤分类。 目前模型仍然依赖于手动注释的肿块分割。 本研究旨在改善甲状腺结节的恶性肿瘤分类性能。 研究对象为超声图像中的甲状腺结节。 数字病理学 甲状腺癌 深度学习 多实例学习 图像 NA
1958 2024-08-05
SpheroScan: A User-Friendly Deep Learning Tool for Spheroid Image Analysis
2023-Jun-28, bioRxiv : the preprint server for biology
研究论文 本文介绍了SpheroScan,一个用户友好的深度学习工具,用于球形图像分析 开发了一个全自动、基于网络的工具,使用掩模区域卷积神经网络进行图像检测和分割 NA 解决缺乏自动化和用户友好的3D球体图像分析工具的问题 使用IncuCyte活细胞分析系统和常规显微镜拍摄的球形图像 数字病理 NA 深度学习 卷积神经网络 图像 使用的训练集和验证集的具体样本数量未提供
1959 2024-08-05
The ChatGPT Storm and What Faculty Can Do
2023 May-Jun 01, Nurse educator IF:2.4Q1
研究论文 本论文讨论了ChatGPT在学术界的迅速普及及其伦理使用的关注 探讨教师如何应对ChatGPT带来的挑战,强调自我反思、批判性思维和独立学习的重要性 未提及具体的实证研究或数据支持 旨在探讨ChatGPT在护理教育中的潜力及其伦理使用 关注职员及学生如何利用ChatGPT进行学习和信息评估 自然语言处理 NA 深度学习语言模型 NA 文本 NA
1960 2024-08-05
Intelligent oncology: The convergence of artificial intelligence and oncology
2023-Mar, Journal of the National Cancer Center IF:7.6Q1
研究论文 本文描述了一种称为智能肿瘤学的整体和结构化概念 提出了一个跨学科的智能肿瘤学概念,整合多个领域以促进癌症管理 智能肿瘤学的概念和应用仍处于 infancy,面临许多障碍和挑战 旨在促进癌症预防、筛查、早期诊断和精确治疗 整合肿瘤学、放射学、病理学、分子生物学等领域 计算机视觉 癌症 自然语言处理、机器/深度学习 NA NA NA
回到顶部