本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2025-10-05 |
A multimodal deep learning model to infer cell-type-specific functional gene networks
2023-Feb-14, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-023-05146-x
PMID:36788477
|
研究论文 | 开发了一种多模态深度学习模型来预测人脑中细胞类型特异性功能基因网络 | 首次整合单核基因表达数据和全局蛋白质相互作用网络来构建细胞类型特异性功能基因网络 | 目前仅应用于人脑组织,尚未验证在其他组织中的适用性 | 预测细胞类型特异性功能基因网络以理解基因在特定细胞类型中的功能关系 | 人脑中的不同细胞类型及其功能基因网络 | 生物信息学 | 自闭症,阿尔茨海默病 | 单核RNA测序,蛋白质相互作用网络分析 | 多模态深度学习,CNN,boosting tree | 基因表达数据,蛋白质相互作用数据 | NA | NA | MDLCN,CNN | ROC曲线下面积,精确召回曲线下面积 | NA |
| 2 | 2025-10-06 |
Quality assurance (QA) for monitoring the performance of assisted reproductive technology (ART) staff using artificial intelligence (AI)
2023-Feb, Journal of assisted reproduction and genetics
IF:3.2Q2
DOI:10.1007/s10815-022-02649-z
PMID:36374394
|
研究论文 | 本研究评估了基于人工智能的质量保证工具在辅助生殖技术中监测医护人员胚胎操作表现的效用 | 首次将深度学习神经网络应用于辅助生殖技术医护人员操作表现的持续监测和质量保证 | 样本量相对有限,仅评估了特定医疗中心的医护人员表现 | 评估AI质量保证工具在监测ART医护人员胚胎操作表现中的准确性和实用性 | 辅助生殖技术中的医护人员(医生和胚胎学家)及其胚胎操作表现 | 医疗人工智能 | 生殖医学 | 深度学习神经网络 | 深度学习神经网络 | 胚胎发育数据和临床妊娠结果 | 160例胚胎移植,160例玻璃化冷冻,160例解冻,120例滋养层活检 | NA | NA | 植入率预测准确度,Wilcoxon符号秩检验 | NA |
| 3 | 2025-10-06 |
Automated In Vivo High-Resolution Imaging to Detect Human Papillomavirus-Associated Anal Precancer in Persons Living With HIV
2023-02-01, Clinical and translational gastroenterology
IF:3.0Q2
DOI:10.14309/ctg.0000000000000558
PMID:36729506
|
研究论文 | 本研究开发了一种结合高分辨率显微内镜和深度学习算法的自动化系统,用于HIV感染者肛门癌前病变的实时诊断 | 首次将高分辨率显微内镜与多任务深度学习网络结合,实现肛门癌前病变的自动化实时诊断 | 样本量较小(仅77名HIV感染者),特异性相对较低(0.60) | 开发自动化实时诊断系统以改善肛门癌筛查效率 | HIV感染者的肛门鳞状上皮细胞 | 医学影像分析 | 肛门癌前病变 | 高分辨率显微内镜成像,荧光显微镜 | 多任务深度学习网络 | 荧光显微图像 | 77名HIV感染者 | NA | 多任务深度学习网络 | AUC, 灵敏度, 特异性 | NA |
| 4 | 2025-10-06 |
Event-Based Clinical Finding Extraction from Radiology Reports with Pre-trained Language Model
2023-02, Journal of digital imaging
IF:2.9Q2
DOI:10.1007/s10278-022-00717-5
PMID:36253581
|
研究论文 | 提出基于预训练语言模型的事件抽取方法,从放射学报告中提取临床发现 | 使用基于事件的表示方法捕获放射学发现的细粒度细节,并采用在300万份放射学报告上预训练的BERT模型 | 仅针对CT报告和胸部X光报告进行验证,未涵盖所有类型的放射学报告 | 从放射学报告中自动提取临床发现,支持诊断、分诊、结果预测和临床研究 | 放射学报告中的临床异常发现 | 自然语言处理 | NA | 自然语言处理,深度学习 | BERT | 文本(放射学报告) | 500份标注的CT报告,外加MIMIC-CXR数据库的外部验证集 | BERT | BERT | F1分数 | NA |
| 5 | 2025-10-06 |
Scribe: Next Generation Library Searching for DDA Experiments
2023-02-03, Journal of proteome research
IF:3.8Q1
DOI:10.1021/acs.jproteome.2c00672
PMID:36695531
|
研究论文 | 介绍Scribe——一种利用深度学习碎片预测技术的新型谱库搜索引擎,用于数据依赖性采集实验 | 采用深度学习碎片预测软件Prosit,能够预测FASTA数据库中所有肽段的碎片化和保留时间,无需依赖精心策划的DDA谱库 | NA | 开发更灵敏和定量精确的蛋白质组学工作流程 | 肽段识别和定量分析 | 蛋白质组学 | NA | 数据依赖性采集(DDA),深度学习碎片预测 | 深度学习 | 质谱数据 | NA | Prosit, Percolator | NA | 灵敏度,定量精确度,错误发现率 | NA |
| 6 | 2025-10-06 |
Overtriage, Undertriage, and Value of Care after Major Surgery: An Automated, Explainable Deep Learning-Enabled Classification System
2023-02-01, Journal of the American College of Surgeons
IF:3.8Q1
DOI:10.1097/XCS.0000000000000471
PMID:36648256
|
研究论文 | 开发了一种自动化、可解释的深度学习术后分诊分类系统,用于评估过度分诊和分诊不足对护理价值的影响 | 首次提出可自动生成可解释决策支持的术后分诊分类系统,并验证其在多中心的重复性 | 研究仅基于两家大学医院的数据,可能限制结果的普适性 | 测试自动化术后分诊分类系统的可重复性,并评估其对护理价值的影响 | 接受住院手术的成年患者 | 医疗人工智能 | 术后护理 | 电子健康记录分析 | 深度学习 | 电子健康记录数据 | 13,263例住院手术患者(4,669例ICU入院和8,594例普通病房入院) | NA | 可解释深度学习模型 | 死亡率、发病率、护理价值、住院时间、成本分析 | NA |
| 7 | 2025-06-18 |
Simultaneous Estimation of Hand Configurations and Finger Joint Angles Using Forearm Ultrasound
2023-Feb, IEEE transactions on medical robotics and bionics
IF:3.4Q2
DOI:10.1109/tmrb.2023.3237774
PMID:40511365
|
研究论文 | 提出一种基于卷积神经网络(CNN)的深度学习流程,用于预测手指关节角度和手部配置分类 | 首次利用前臂超声图像同时估计手部配置和掌指关节(MCP)角度,填补了文献中的空白 | 研究样本量较小,仅涉及6名受试者 | 开发流畅直观的人机交互方法,用于数字系统、增强/虚拟现实(AR/VR)界面和物理机器人系统 | 手部运动识别,特别是手部配置分类和MCP关节角度检测 | 计算机视觉 | NA | 前臂超声成像 | CNN, 支持向量分类器(SVC), 多层感知机(MLP) | 图像 | 6名受试者的前臂超声图像和运动捕捉数据 | NA | NA | NA | NA |
| 8 | 2025-06-10 |
A Large-Scale IoT-Based Scheme for Real-Time Prediction of Infectious Disease Symptoms
2023-Feb-02, Mobile networks and applications : MONET
DOI:10.1007/s11036-023-02111-z
PMID:40479340
|
研究论文 | 提出了一种基于物联网(IoT)的大规模实时监测方案,用于通过人们的行为和无线体域网(WBAN)预测传染病症状 | 利用IoT和WBAN技术实时监测人群行为,预测传染病症状及传播,弥补了以往研究依赖医疗设施内拍摄图像的局限性 | 需要构建强大的覆盖模型以确保实时监测,且性能评估依赖于模拟环境 | 开发实时预测传染病症状及传播的监测方案 | 人群行为及传染病症状 | 物联网与健康监测 | 传染病 | IoT, WBAN, 深度学习 | 深度学习模型 | 图像、声音、视频 | NA | NA | NA | NA | NA |
| 9 | 2025-06-07 |
PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation
2023-Feb-17, Evolving systems
IF:2.7Q3
DOI:10.1007/s12530-023-09489-x
PMID:38625320
|
research paper | 提出了一种名为PDRF-Net的渐进密集残差融合网络,用于COVID-19肺部CT图像的分割 | 引入了密集跳跃连接以捕获多级上下文信息,设计了高效的聚合残差模块,结合视觉Transformer和残差块,以及双边通道像素加权模块逐步融合多分支特征图 | NA | 实现COVID-19患者肺部CT图像中病变部位的快速准确分割 | COVID-19患者的肺部CT图像 | digital pathology | COVID-19 | CT图像分割 | PDRF-Net (progressive dense residual fusion network) | image | 在两个COVID-19数据集上进行测试 | NA | NA | NA | NA |
| 10 | 2025-05-31 |
Automated Classification of Intravenous Contrast Enhancement Phase of CT Scans Using Residual Networks
2023-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2655263
PMID:40248190
|
research paper | 本研究利用残差网络(ResNet34)自动分类CT扫描的静脉对比增强阶段,以提高计算机辅助诊断的准确性 | 首次使用ResNet34自动分类多期CT扫描的静脉对比增强阶段,准确率达99%,优于VGG19和DenseNet121 | 研究使用的数据集仅包含395个弱标记的多期CT扫描,样本量相对较小 | 开发一种自动分类多期CT扫描的方法,以改进数据增强和深度学习模型的训练 | 多期CT扫描的静脉对比增强阶段 | computer vision | NA | deep learning | ResNet34, VGG19, DenseNet121 | image | 395个多期CT扫描(316训练,79测试) | NA | NA | NA | NA |
| 11 | 2025-10-07 |
Cyclic peptide structure prediction and design using AlphaFold
2023-Feb-26, bioRxiv : the preprint server for biology
DOI:10.1101/2023.02.25.529956
PMID:36865323
|
研究论文 | 本研究通过改进AlphaFold网络实现了环肽结构的准确预测与设计 | 首次将AlphaFold网络成功应用于环肽结构预测与设计,解决了该领域因结构数据稀缺导致的方法开发难题 | 环肽结构数据库规模较小可能限制模型性能 | 开发基于深度学习的环肽结构预测与设计方法 | 7-13个氨基酸长度的环肽分子 | 计算生物学 | NA | 深度学习,X射线晶体学 | AlphaFold | 蛋白质序列与结构数据 | 49个天然环肽用于验证,7个设计序列通过晶体结构验证,约10,000个设计候选物 | AlphaFold | 改进的AlphaFold架构 | pLDDT,RMSD | NA |
| 12 | 2025-10-07 |
Massively parallel characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in the developing human cortex
2023-Feb-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.02.15.528663
PMID:36824845
|
研究论文 | 通过大规模并行报告基因检测系统分析人类发育期大脑皮层中的基因调控元件及其与精神疾病的关联 | 首次在人类原代细胞和脑类器官中系统评估了超过10万个调控序列的功能活性,并利用深度学习解析增强子活性的序列基础和上游调控因子 | 研究主要聚焦于发育期大脑皮层,未涵盖其他脑区或发育阶段 | 建立人类神经元发育过程中功能性基因调控元件和变异的全面目录 | 人类中期妊娠皮层原代细胞和脑类器官 | 计算生物学 | 精神疾病 | 大规模并行报告基因检测(MPRA), 深度学习 | 深度学习模型 | 基因组序列数据, 表观遗传数据 | 102,767个调控序列 | NA | NA | 增强子活性显著性变化 | NA |
| 13 | 2025-10-07 |
De novo design of luciferases using deep learning
2023-02, Nature
IF:50.5Q1
DOI:10.1038/s41586-023-05696-3
PMID:36813896
|
研究论文 | 本研究使用深度学习方法从头设计具有高活性和选择性的荧光素酶 | 开发了基于深度学习的'家族级幻觉'方法,能够生成大量包含多样化口袋形状的理想化蛋白质结构和编码这些结构的序列 | NA | 从头设计具有高催化效率和底物选择性的荧光素酶 | 人工设计的荧光素酶及其对合成荧光素底物(二苯基特拉嗪和2-脱氧腔肠素)的催化性能 | 机器学习 | NA | 深度学习 | NA | 蛋白质结构数据 | NA | NA | NA | 催化效率(k/K)、底物选择性、热稳定性(熔解温度)、酶分子量 | NA |
| 14 | 2025-04-04 |
Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT
2023-Feb, Radiology
IF:12.1Q1
DOI:10.1148/radiol.220101
PMID:36125375
|
研究论文 | 本研究开发了一种机器学习算法,用于在增强CT图像上分割肾上腺并分类正常和含肿块的肾上腺 | 提出了一种两阶段的机器学习流程,能够自动分割肾上腺并区分正常肾上腺和含肿块的肾上腺 | 在二次测试集上的分类敏感性较低(69%) | 开发一种用于肾上腺分割和分类的机器学习算法 | 增强CT图像中的肾上腺 | 计算机视觉 | 肾上腺疾病 | 深度学习 | 深度学习分割和分类模型 | CT图像 | 开发数据集包含274例CT检查(251名患者),二次测试集包含991例CT检查(991名患者) | NA | NA | NA | NA |
| 15 | 2025-10-07 |
Transport-based morphometry of nuclear structures of digital pathology images in cancers
2023-Feb-02, ArXiv
PMID:36776820
|
研究论文 | 提出一种基于最优传输理论的核结构形态测量新方法,用于分析癌症数字病理图像中的核染色质结构 | 开发了基于最优传输理论的形态测量框架,可直接从成像数据建模核染色质结构信息内容,无需依赖传统特征提取方法 | NA | 开发定量核形态测量方法以区分良恶性肿瘤 | 癌症数字病理图像中的细胞核结构 | 数字病理学 | 癌症 | 数字病理成像 | NA | 图像 | NA | NA | NA | NA | NA |
| 16 | 2025-10-07 |
High-throughput property-driven generative design of functional organic molecules
2023-Feb, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-022-00391-1
PMID:38177626
|
研究论文 | 本研究开发了一种结合生成式深度学习与监督式深度学习的分子设计方法,用于高效发现具有优化电子特性的有机分子 | 通过将预测分子三维构象的生成模型与预测电子特性的监督模型相结合,实现了对多个分子特性的帕累托优化,无需在预测过程中进行量子化学计算 | 方法主要针对有机电子学应用进行验证,在其他材料领域的适用性需要进一步测试 | 开发高效的功能性有机分子生成设计方法 | 有机分子 | 机器学习 | NA | 深度学习 | 生成式深度学习模型, 监督式深度学习模型 | 分子三维构象数据, 电子结构数据 | NA | NA | NA | 帕累托最优性 | NA |
| 17 | 2025-02-21 |
Attention-assisted hybrid 1D CNN-BiLSTM model for predicting electric field induced by transcranial magnetic stimulation coil
2023-02-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-29695-6
PMID:36781975
|
研究论文 | 本文提出了一种基于1D CNN和BiLSTM的注意力机制模型,用于预测经颅磁刺激线圈感应的电场 | 结合1D CNN和BiLSTM的注意力机制模型,提高了电场预测的准确性和效率 | 未提及具体局限性 | 提高经颅磁刺激线圈感应电场的预测准确性和效率 | 经颅磁刺激线圈感应的电场 | 机器学习 | NA | NA | 1D CNN-BiLSTM | 模拟数据 | NA | NA | NA | NA | NA |
| 18 | 2025-02-21 |
Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation
2023-02-06, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/42519
PMID:36745490
|
研究论文 | 本研究开发并验证了一种基于长短期记忆(LSTM)神经网络的模型,用于预测流感样疾病(ILI)的传播,结合了监测数据、天气数据和Twitter数据 | 首次结合ILI监测数据、天气数据和Twitter数据,利用深度学习技术开发预测模型,用于ILI病例的实时预测和预报 | 研究主要针对希腊地区,可能在其他地区或社交媒体平台上的适用性需要进一步验证 | 开发能够实时预测和预报ILI病例的模型,以增强传染病监测的准确性和可靠性 | ILI监测数据、天气数据和Twitter数据 | 自然语言处理 | 流感样疾病 | LSTM神经网络 | LSTM | 文本、时间序列数据 | 2010年至2019年希腊地区的ILI监测数据、天气数据和Twitter数据 | NA | NA | NA | NA |
| 19 | 2025-02-21 |
Clinical Decision Support Systems to Predict Drug-Drug Interaction Using Multilabel Long Short-Term Memory with an Autoencoder
2023-02-02, International journal of environmental research and public health
DOI:10.3390/ijerph20032696
PMID:36768060
|
研究论文 | 本文提出了一种基于深度学习的药物-药物相互作用预测技术SSODL-DDIP,用于大数据环境下的医疗决策支持 | 结合麻雀搜索优化算法与多标签长短期记忆网络和自编码器模型,提高了药物-药物相互作用预测的准确性和性能 | 未提及具体的数据集大小或实验的具体限制条件 | 开发一种新的技术来预测药物-药物相互作用,以提高药物研究中的安全性 | 药物-药物相互作用 | 机器学习 | NA | 深度学习 | 多标签长短期记忆网络(MLSTM)与自编码器(AE) | 药物相关网络或分子图数据 | 未提及具体样本数量 | NA | NA | NA | NA |
| 20 | 2025-02-21 |
Attention-Based Convolutional Recurrent Deep Neural Networks for the Prediction of Response to Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder
2023-Feb, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065723500077
PMID:36641543
|
研究论文 | 本文开发了一种基于深度学习的模型,用于预测重度抑郁症患者对重复经颅磁刺激治疗的反应 | 结合了预训练的卷积神经网络(CNN)和带有注意力机制的长短期记忆(LSTM)单元,充分利用了脑电图信号的时空信息 | 样本量较小,仅涉及34名患者 | 预测重度抑郁症患者对重复经颅磁刺激治疗的反应 | 34名重度抑郁症患者的脑电图信号 | 机器学习 | 重度抑郁症 | 脑电图信号分析 | VGG16, Xception, EfficientNetB0, LSTM | 脑电图信号 | 34名患者 | NA | NA | NA | NA |