深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202303-202303] [清除筛选条件]
当前共找到 148 篇文献,本页显示第 1 - 20 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1 2025-06-10
Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review
2023-Mar-11, Journal of the knowledge economy IF:4.0Q1
系统综述 本文通过文献计量和定性内容分析方法,探讨人工智能(AI)在经济发展(ED)中的作用和地位 首次将研究聚焦于AI与经济开发的交叉领域,采用两步法方法论,结合文献计量和内容分析 研究基于文献分析,可能未涵盖所有实际应用案例 探讨AI技术对经济发展的影响及其在该领域中的角色 AI与经济发展交叉领域的研究文献 机器学习 NA 文献计量工具Bibliometrix,文献耦合算法 NA 文本 2211份文献
2 2025-06-08
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans
2023-03, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于深度集成学习的自动非进展性AMD分类方法,通过优化的视网膜层分割和SD-OCT扫描提高诊断准确性 结合图割算法和三次样条自动标注11个视网膜边界,并采用深度集成机制结合Bagged Tree和端到端深度学习分类器 未提及具体的外部数据集规模和多样性,可能影响模型的泛化能力 提高年龄相关性黄斑变性(AMD)的自动检测准确性 SD-OCT扫描图像中的视网膜层 数字病理学 年龄相关性黄斑变性 SD-OCT扫描 深度集成学习(Bagged Tree + 深度学习分类器) 医学图像 内部和外部数据集(具体数量未提及)
3 2025-06-07
A survey on recent trends in deep learning for nucleus segmentation from histopathology images
2023-Mar-06, Evolving systems IF:2.7Q3
综述 本文系统综述了过去五年(2017-2021)中深度学习在组织病理学图像中细胞核分割的应用 总结了多种分割模型(如U-Net、SCPP-Net、Sharp U-Net和LiverNet)的相似性、优势、使用的数据集以及新兴研究领域 仅覆盖了过去五年的研究,可能未包括最新的技术进展 探讨深度学习在细胞核分割中的最新趋势和应用 组织病理学图像中的细胞核 数字病理学 癌症 深度学习 U-Net, SCPP-Net, Sharp U-Net, LiverNet 图像 NA
4 2025-05-09
Assessment of malalignment factors related to Invisalign treatment time aided by automated imaging processes
2023-Mar-01, The Angle orthodontist
research paper 本研究通过自动成像过程评估与Invisalign治疗时间相关的错位因素 使用深度学习方法进行自动牙齿分割和标志点识别,并引入复合评分作为治疗时间的预测指标 没有足够证据表明特定类型的牙齿移动会影响总治疗时间 识别影响Invisalign治疗持续时间的错位类型和严重程度的预测因素 116名接受Invisalign治疗的患者 digital pathology malocclusion deep learning NA digital scan 116名患者
5 2025-04-06
Privacy-Aware Early Detection of COVID-19 Through Adversarial Training
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文探讨了通过对抗训练实现隐私保护的COVID-19早期检测方法 提出了具有内置保护机制的COVID-19检测模型,能选择性保护敏感属性免受对抗攻击 仅使用了英国四家医院的数据,可能影响模型的广泛适用性 开发能保护患者隐私的COVID-19早期检测模型 COVID-19患者 机器学习 COVID-19 对抗训练 神经网络 临床数据(血液检测和生命体征测量) 来自牛津大学医院(OUH)、贝德福德郡医院NHS基金会信托(BH)、伯明翰大学医院NHS基金会信托(UHB)和朴茨茅斯医院大学NHS信托(PUH)的数据集
6 2025-04-06
Bi-CapsNet: A Binary Capsule Network for EEG-Based Emotion Recognition
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种用于基于EEG情感识别的二进制胶囊网络(Bi-CapsNet),以降低计算成本和内存使用 Bi-CapsNet将32位权重和激活二值化为1位,并用高效的位操作替换浮点操作,同时通过连续函数近似二值化过程解决反向传播中的函数不连续问题 识别准确率相比全精度模型有轻微下降(<1%) 开发一种低计算成本和内存使用的EEG情感识别方法 EEG信号 机器学习 NA 二进制神经网络 Bi-CapsNet(二进制胶囊网络) EEG信号 两个流行的EEG情感数据库(DEAP和DREAMER)
7 2025-04-06
EEG Reconstruction With a Dual-Scale CNN-LSTM Model for Deep Artifact Removal
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种名为DuoCL的双尺度CNN-LSTM模型,用于深度去除EEG信号中的伪迹 该模型通过双尺度CNN提取形态特征,并通过LSTM强化时间依赖性,能够有效去除未知和混合伪迹 未提及具体的数据集大小或实验条件的限制 提高EEG信号中伪迹去除的准确性和适应性 EEG信号 机器学习 NA CNN, LSTM 双尺度CNN-LSTM模型 EEG信号 未提及具体样本数量
8 2025-04-06
Multimodal Fusion Network for Detecting Hyperplastic Parathyroid Glands in SPECT/CT Images
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一种多模态融合网络用于SPECT/CT图像中增生甲状旁腺的检测 首次在SHPT疾病中使用SPECT/CT图像检测异常甲状旁腺,并提出了一种新型的三路径架构融合网络 未提及具体样本量及可能存在的泛化性问题 提高SPECT/CT图像中低摄取甲状旁腺的检测准确率 继发性甲状旁腺功能亢进症(SHPT)患者的增生甲状旁腺 数字病理 甲状旁腺疾病 SPECT/CT双模态成像技术 CNN(三路径架构融合网络) 医学影像(SPECT/CT图像) NA
9 2025-04-06
A Hierarchical Attention-Based Method for Sleep Staging Using Movement and Cardiopulmonary Signals
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 提出了一种基于分层注意力机制的深度学习方法,利用身体运动、心电图和腹部呼吸信号进行睡眠分期 结合多头自注意力机制和CNN,实现了分层自注意力权重分配,改进了长序列处理和序列建模能力 仅使用了两个公共数据集进行评估,可能需要更多数据验证方法的泛化能力 开发一种非侵入式设备获取的运动和心肺信号进行长期睡眠监测的方法 睡眠分期 machine learning NA NA LSTM, CNN, 多头自注意力机制 身体运动信号、心电图(ECG)、腹部呼吸信号 两个公共数据集
10 2025-04-06
A Single-Shot Harmonic Imaging Approach Utilizing Deep Learning for Medical Ultrasound
2023-Mar, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
research paper 提出一种基于深度学习的单次谐波成像技术,用于医学超声,以提高成像质量和帧率 使用深度学习技术实现单次谐波成像,相比传统多脉冲谐波成像方法提高了帧率并减少了运动伪影 未明确提及具体局限性 解决医学超声中谐波成像的对比度降低和帧率问题 医学超声图像 医学影像处理 NA 深度学习 非对称卷积编码器-解码器结构 超声回波数据 多种目标和样本进行评估
11 2025-04-06
Convolutional Feature Descriptor Selection for Mammogram Classification
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文设计了一种新型深度学习方法,用于自动诊断乳腺X线摄影中的乳腺癌,重点关注局部病变区域并仅使用图像级分类标签 提出了一种基于深度激活图分布的自适应卷积特征描述符选择(AFDS)结构,采用三角阈值策略计算特定阈值以指导激活图确定哪些特征描述符(局部区域)具有区分性 需要进一步验证在更大规模数据集上的性能表现 开发一种无需额外检测或分割注释的乳腺癌自动诊断方法 乳腺X线摄影图像 计算机视觉 乳腺癌 深度学习 CNN 图像 两个公开可用的INbreast和CBIS-DDSM数据集
12 2025-04-06
Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种结合多任务学习的深度学习模型,用于个性化血糖预测 采用共享和聚类隐藏层的网络架构,结合堆叠LSTM层学习通用特征,并通过性别特定和个体特定的密集层进行个性化调整 NA 预测个性化血糖浓度以支持人工胰腺控制算法和医疗决策 I型糖尿病患者的血糖数据 机器学习 糖尿病 深度学习 LSTM 临床健康记录 OhioT1DM临床数据集
13 2025-04-06
A Multi-Modal Heterogeneous Graph Forest to Predict Lymph Node Metastasis of Non-Small Cell Lung Cancer
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种多模态异构图森林方法(MHGF),用于从多模态数据中提取淋巴结转移(LNM)的深度表示,以预测非小细胞肺癌的淋巴结转移 提出了一种新的多模态异构图森林方法(MHGF),通过构建子图并利用图神经网络学习子图表示,提高了淋巴结转移预测的准确性和稳定性 实验样本量相对较小(681例患者),可能影响模型的泛化能力 开发一种机器学习方法,用于准确预测非小细胞肺癌的淋巴结转移 非小细胞肺癌患者的淋巴结转移 数字病理学 肺癌 多模态数据融合、图神经网络 ResNet-Trans、图神经网络 CT图像、临床特征 681例患者的多模态数据
14 2025-04-06
Smart Low Level Laser Therapy System for Automatic Facial Dermatological Disorder Diagnosis
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究提出了一种结合深度神经网络和医疗物联网(MIoT)的低水平激光治疗(LLLT)系统,用于自动面部皮肤病诊断 1) 提供了自动光疗系统的全面硬件和软件设计 2) 提出了改进的UNet深度学习模型用于面部皮肤病分割 3) 开发了合成数据生成过程以解决数据集有限和不平衡的问题 未明确提及具体限制,但暗示了数据集有限和不平衡的问题 提高面部皮肤病诊断和治疗效率 面部皮肤病患者 数字病理学 皮肤病 低水平激光治疗(LLLT) 改进的U-Net 皮肤镜图像 未明确提及具体样本数量
15 2025-04-06
Glucose Transformer: Forecasting Glucose Level and Events of Hyperglycemia and Hypoglycemia
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一个基于深度学习模型的框架,用于预测2型糖尿病住院患者的血糖水平并提前检测高血糖和低血糖事件 首次将Transformer模型应用于血糖水平的时序预测和事件检测,并采用生成对抗网络进行数据增强以解决数据不平衡问题 高血糖和低血糖事件发生率低导致分类不平衡问题 开发一个能够预测血糖水平并提前检测异常血糖事件的深度学习框架 2型糖尿病住院患者的连续血糖监测数据 机器学习 糖尿病 连续血糖监测(CGM) Transformer, GAN 时间序列数据 一周内收集的2型糖尿病住院患者数据
16 2025-04-06
Self-Aware SGD: Reliable Incremental Adaptation Framework for Clinical AI Models
2023-Mar, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为自感知随机梯度下降(SGD)的增量深度学习算法,用于临床AI模型的可靠增量适应 引入了一种结合上下文老虎机式检查的自感知SGD算法,以过滤不可靠的梯度更新,确保模型修改的可靠性 实验仅在牛津大学医院的数据集上进行,可能缺乏在其他数据集上的泛化验证 开发一种可靠的增量学习框架,以适应临床AI模型在动态医疗环境中的分布变化 临床AI模型 机器学习 NA 增量学习,随机梯度下降(SGD) 深度学习 临床数据 牛津大学医院数据集
17 2025-04-02
Deep learning in digital pathology for personalized treatment plans of cancer patients
2023-Mar, Seminars in diagnostic pathology IF:2.9Q2
综述 本文综述了数字病理学中深度学习在癌症患者个性化治疗计划中的应用 利用AI自动量化生物标志物,提高治疗选择的效率和客观性 NA 改善癌症患者的个性化治疗选择 癌症患者 数字病理学 癌症 AI 深度学习 H&E染色病理图像 NA
18 2025-03-30
U-Sleep's resilience to AASM guidelines
2023-Mar-06, NPJ digital medicine IF:12.4Q1
research paper 研究探讨了U-Sleep睡眠评分算法在不完全遵循AASM指南情况下的表现 展示了深度学习算法在睡眠评分任务中可以不依赖临床知识或严格遵循AASM指南 仅评估了U-Sleep算法,未与其他算法进行广泛比较 评估深度学习睡眠评分算法对AASM指南的适应性 睡眠评分算法和AASM指南 machine learning NA deep learning U-Sleep polysomnography studies 28528项多导睡眠图研究,来自13项不同的临床研究
19 2025-03-26
Discovery of a cryptic pocket in the AI-predicted structure of PPM1D phosphatase explains the binding site and potency of its allosteric inhibitors
2023-Mar-24, bioRxiv : the preprint server for biology
研究论文 本文通过分子动力学模拟和深度学习技术,揭示了PPM1D磷酸酶中的一个隐秘结合口袋,解释了其变构抑制剂的结合位点和效力 利用AlphaFold预测结构和分子动力学模拟发现PPM1D中的隐秘结合口袋,并通过深度学习预测化合物结合姿态,提高了虚拟筛选的预测能力 研究依赖于预测结构和模拟数据,缺乏实验验证 探索蛋白质动力学在虚拟筛选中的应用,提高药物发现的预测能力 PPM1D/Wip1磷酸酶及其变构抑制剂 计算生物学 癌症 分子动力学模拟, 深度学习, 虚拟筛选 AlphaFold, 马尔可夫状态模型(MSM) 蛋白质结构数据, 分子动力学模拟数据 NA
20 2025-03-19
Deep Learning Initialized Compressed Sensing (Deli-CS) in Volumetric Spatio-Temporal Subspace Reconstruction
2023-Mar-28, bioRxiv : the preprint server for biology
研究论文 本文提出了一种名为Deli-CS的深度学习方法,用于加速时空MRI数据的重建,同时减少深度学习引起的幻觉风险 提出了Deli-CS框架,通过深度学习生成的起点来“启动”迭代重建,从而减少重建时间 需要大量训练数据,且在不强制数据一致性的情况下可能产生与采集数据不匹配的结果 减少时空MRI数据的重建时间,同时限制深度学习引起的幻觉风险 全脑多参数映射的时空MRI数据 医学影像处理 NA 深度学习,压缩感知 深度学习模型 时空MRI数据 NA
回到顶部