深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202306-202306] [清除筛选条件]
当前共找到 154 篇文献,本页显示第 21 - 40 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
21 2025-10-06
Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions
2023-Jun, Journal of cancer research and clinical oncology IF:2.7Q3
研究论文 本研究开发基于多参数MRI的深度学习模型组合诊断方法,用于区分三阴性乳腺癌与纤维腺瘤BI-RADS 4类病变 首次将多参数MRI(增强T1加权、扩散加权和T2加权成像)的深度学习模型组合应用于三阴性乳腺癌与纤维腺瘤的鉴别诊断 回顾性研究设计,样本量有限(319例),缺乏外部验证 评估多参数MRI深度学习模型组合在区分三阴性乳腺癌与纤维腺瘤BI-RADS 4类病变中的价值 319例女性患者的319个病理证实的BI-RADS 4类乳腺病变 医学影像分析 乳腺癌 多参数MRI(增强T1加权成像、扩散加权成像、T2加权成像) 深度学习模型 医学影像 319例女性患者,随机分为训练集、验证集和测试集 NA NA AUC, 敏感度, 特异度, 准确度, 加权kappa值 NA
22 2025-10-07
Artificial intelligence, machine learning, and deep learning in liver transplantation
2023-06, Journal of hepatology IF:26.8Q1
综述 探讨人工智能、机器学习和深度学习在肝移植领域的应用前景与挑战 系统阐述AI技术在肝移植术前术后全流程中的创新应用场景 模型训练存在数据不平衡问题,存在数据隐私隐患,缺乏真实世界性能评估标准 研究人工智能技术在肝移植临床决策支持中的应用价值 终末期肝病患者的肝移植全过程管理 机器学习 肝病 NA 机器学习, 深度学习 人口统计学数据, 临床数据, 实验室数据, 病理数据, 影像数据, 组学数据 NA NA NA NA NA
23 2025-05-10
CROSS-DOMAIN DIFFUSION BASED SPEECH ENHANCEMENT FOR VERY NOISY SPEECH
2023-Jun, Proceedings of the ... IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP (Conference)
研究论文 本文提出了一种基于跨域扩散的语音增强方法,用于极低信噪比条件下的非平稳噪声场景 将基于扩散的学习方法引入增强模型,提高了在极低信噪比条件下的鲁棒性 实验仅在TIMIT数据集上进行,未在其他数据集上验证 提高极低信噪比条件下的语音增强性能 语音信号 语音处理 NA 扩散模型 扩散模型 语音信号 TIMIT数据集 NA NA NA NA
24 2025-10-07
Sequence basis of transcription initiation in human genome
2023-Jun-29, bioRxiv : the preprint server for biology
研究论文 通过深度学习可解释建模方法在碱基对分辨率水平揭示人类基因组转录起始的序列基础 首次在碱基对分辨率水平系统解释人类启动子功能,发现多个未被表征的位置特异性效应模式 NA 解析人类基因组中转录起始的序列决定规则 人类启动子序列、241种哺乳动物基因组、小鼠转录起始位点数据 机器学习 NA 深度学习可解释建模、实验扰动验证 深度学习 基因组序列数据、转录起始位点数据 241种哺乳动物基因组 NA NA NA NA
25 2025-10-07
Tissue response curve-shape analysis of dynamic glucose-enhanced and dynamic contrast-enhanced magnetic resonance imaging in patients with brain tumor
2023-06, NMR in biomedicine IF:2.7Q1
研究论文 开发基于组织响应曲线形状的动态葡萄糖增强MRI分析方法,并与动态对比增强MRI在脑肿瘤患者中进行比较 首次提出基于深度学习识别七种组织响应曲线形状的方法,创建彩色编码曲线图展示不同曲线类型的空间分布 样本量较小(11例患者),仅针对胶质瘤患者进行研究 比较动态葡萄糖增强MRI和动态对比增强MRI在脑肿瘤检测中的异同 疑似胶质瘤患者的脑部组织 医学影像分析 脑肿瘤 动态葡萄糖增强MRI,动态对比增强MRI,7T磁共振成像 深度学习 磁共振影像 11例疑似胶质瘤患者 NA NA 曲线下面积,p值 NA
26 2025-10-07
Integrative dissection of gene regulatory elements at base resolution
2023-Jun-14, Cell genomics IF:11.1Q1
研究论文 本研究结合表观遗传扰动、碱基编辑和深度学习技术,在CD69免疫基因座中解析关键调控元件 首次将表观遗传扰动、碱基编辑和深度学习相结合,在天然染色质环境中系统解析调控元件的功能基础 研究主要聚焦于Jurkat T细胞中的CD69基因座,尚未在其他细胞类型或基因座中验证 解析基因调控元件的序列基序和单个碱基功能 CD69免疫基因座的调控序列 机器学习 NA 表观遗传扰动, 碱基编辑, 深度学习 深度学习 表观遗传数据, 基因表达数据 Jurkat T细胞系 NA NA NA NA
27 2025-10-07
Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model
2023-06-25, The Science of the total environment
研究论文 本研究利用可解释人工智能技术解释深度学习模型在野火易发性预测中的关键影响因素 首次将SHAP可解释性模型应用于野火易发性预测的深度学习模型,识别关键环境影响因素 模型可能受到训练数据质量和输入变量不确定性的影响 开发可解释的野火易发性预测模型以有效控制火灾风险 澳大利亚野火易发性区域 机器学习 NA 可解释人工智能 深度学习 环境因子数据 NA NA NA NA NA
28 2025-10-07
Few-shot learning using explainable Siamese twin network for the automated classification of blood cells
2023-Jun, Medical & biological engineering & computing IF:2.6Q3
研究论文 提出基于可解释孪生网络的小样本学习方法用于血细胞自动分类 使用对比学习的孪生网络在少量图像上训练,并提出新的类别激活映射方案增强模型可解释性 仅使用健康外周血细胞图像,未涉及病理状态细胞 开发小样本学习方法实现血细胞自动分类 健康外周血细胞 计算机视觉 血液疾病 显微成像 Siamese网络 图像 17,092张公开细胞组织学图像(6%训练,6%验证,88%测试) NA EfficientNet-B3 准确率 NA
29 2025-02-21
Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM
2023-Jun-27, Sensors (Basel, Switzerland)
研究论文 本文提出了一种结合WaveNet和LSTM的深度学习模型,用于自动检测异常的原始EEG数据 提出了一种新颖的深度学习模型,结合WaveNet和LSTM,用于自动检测异常的EEG数据,并通过多个消融实验验证了模型各部分的有效性和重要性 未提及具体的研究限制 自动化诊断过程,早期准确识别脑电图(EEG)记录中的脑病理特征 异常的原始EEG数据 机器学习 神经系统疾病 深度学习 WaveNet, LSTM EEG信号 使用TUH异常EEG语料库V.2.0.0(TUAB)和另一个独立数据集TUEP进行评估 NA NA NA NA
30 2025-02-21
A deep learning network based on CNN and sliding window LSTM for spike sorting
2023-06, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于CNN和滑动窗口LSTM的深度学习网络,用于神经信号解码中的尖峰排序 结合CNN和LSTM进行尖峰排序和分类,提高了模型的准确性和鲁棒性 在高噪声水平下,召回率有所下降 开发一种准确且具有泛化能力的自动尖峰排序算法 神经信号中的尖峰 机器学习 NA NA CNN, LSTM 神经信号数据 模拟数据和实验数据 NA NA NA NA
31 2025-10-07
Deep learning enables fast, gentle STED microscopy
2023-06-27, Communications biology IF:5.2Q1
研究论文 本研究利用深度学习技术提升STED显微镜成像效率,通过降低像素驻留时间减轻光漂白和光损伤 首次将深度学习应用于STED图像恢复,将像素驻留时间降低1-2个数量级 NA 开发能够减轻光损伤并实现长时间成像的STED显微镜增强方法 亚细胞结构(特别是线粒体动力学) 计算机视觉 NA STED显微镜 深度学习 2D和3D显微镜图像 NA NA NA NA NA
32 2025-10-07
Deep-learning-assisted reconfigurable metasurface antenna for real-time holographic beam steering
2023-Jun, Nanophotonics (Berlin, Germany)
研究论文 提出一种基于深度学习的可重构超表面天线,实现实时全息波束控制 将自编码器与电磁散射方程结合,替代传统迭代方法,实现实时确定超原子状态 需验证玻恩近似在具体应用场景中的有效性 开发实时全息波束控制技术 可重构偶极子阵列超表面天线 机器学习 NA 深度学习,电磁散射计算 自编码器 电磁场模式数据 NA NA 自编码器 计算时间(200微秒) NA
33 2025-10-07
A deep neural network for general scattering matrix
2023-Jun, Nanophotonics (Berlin, Germany)
研究论文 开发了一种深度神经网络用于快速计算任意散射体的散射矩阵 首次使用深度神经网络计算非对称散射体的散射矩阵,速度比有限元求解器快数千倍,且自动满足能量守恒、时间反演和互易性等基本物理原理 NA 解决散射矩阵计算的高计算成本问题 任意形状的散射体 机器学习 NA 深度神经网络 DNN 数值模拟数据 NA NA 深度神经网络 计算速度比较 NA
34 2025-10-07
Digital labeling for 3D histology: segmenting blood vessels without a vascular contrast agent using deep learning
2023-Jun-01, Biomedical optics express IF:2.9Q2
研究论文 提出一种基于深度学习的数字标记方法,可在无需血管造影剂的情况下对3D组织中的血管进行分割 使用回归损失而非传统分割损失训练U-net架构,仅依赖自发荧光信号和DAPI核染色实现血管分割 方法目前仅验证于血管结构,未来需扩展至其他生物结构 开发无需血管造影剂的3D组织血管分割方法 完整组织样本中的血管结构 数字病理学 NA 光学组织透明化,3D荧光显微镜,自发荧光成像 CNN 3D荧光显微镜图像 NA NA U-net 血管检测准确率,血管长度密度,血管方向准确性 NA
35 2024-12-12
Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images
2023-Jun, Information processing in medical imaging : proceedings of the ... conference
研究论文 本文提出了首个端到端的基于几何深度学习的非刚性配准模型,用于扩散磁共振图像(dMRI)中的纤维方向分布场(fODF) 首次提出了一种基于几何深度学习的非刚性配准模型,能够对扩散MRI中的fODF进行无监督配准,并引入了新的可微分层用于局部雅可比估计和重定向 NA 开发一种快速且准确的非刚性配准算法,用于扩散磁共振图像 扩散磁共振图像中的纤维方向分布场(fODF) 计算机视觉 NA 扩散磁共振成像(dMRI) 几何深度学习模型 图像 NA NA NA NA NA
36 2024-12-11
Label- and slide-free tissue histology using 3D epi-mode quantitative phase imaging and virtual H&E staining
2023-Jun-01, ArXiv
PMID:37396611
研究论文 本文提出了一种结合3D定量相位成像技术和无监督生成对抗网络的方法,将未染色厚组织的相位图像转换为虚拟H&E染色图像 首次将3D定量相位成像技术与无监督生成对抗网络结合,实现了无需染色和载玻片的组织病理学分析 需要进一步验证该方法在不同类型组织和疾病中的适用性 开发一种无需染色和载玻片的组织病理学分析方法,以提高诊断效率和降低成本 小鼠肝脏、大鼠胶质肉瘤和人类胶质瘤的新鲜组织样本 数字病理学 NA 3D定量相位成像技术(qOBM) 生成对抗网络(GAN) 图像 小鼠肝脏、大鼠胶质肉瘤和人类胶质瘤的新鲜组织样本 NA NA NA NA
37 2024-11-14
Thyroid Cytopathology Cancer Diagnosis from Smartphone Images Using Machine Learning
2023-06, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 研究使用智能手机图像进行甲状腺细胞病理学癌症诊断的深度学习模型性能 通过颜色增强训练减少了模型对手机和扫描仪图像颜色差异的敏感性,提高了智能手机图像的诊断性能 研究仅限于甲状腺细胞病理学,且样本量较小 评估深度学习模型在智能手机图像上进行甲状腺细胞病理学癌症诊断的性能 甲状腺细针穿刺活检图像 机器学习 甲状腺癌 深度学习 NA 图像 训练集包含964张高分辨率扫描图像,测试集包含100张幻灯片,每张幻灯片20个感兴趣区域 NA NA NA NA
38 2024-10-30
Employing Deep Learning Model to Evaluate Speech Information in Acoustic Simulations of Auditory Implants
2023-Jun-29, Research square
研究论文 本文提出了一种利用深度学习模型评估听觉植入设备声学模拟中语音信息的新方法 本文创新性地使用深度学习语音识别模型替代实际人类参与者进行听觉植入设备的声学模拟,显著提高了模拟效率并降低了成本 本文未详细讨论深度学习模型在极端条件下的表现,以及模型与真实人类感知之间的细微差异 旨在开发一种高效且准确的听觉植入设备声学模拟评估方法 听觉植入设备的声学模拟及其对语音感知的影响 机器学习 NA 深度学习 深度学习模型 语音 NA NA NA NA NA
39 2024-10-20
MCP-Net: Introducing Patlak Loss Optimization to Whole-body Dynamic PET Inter-frame Motion Correction
2023-Jun-27, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种集成Patlak损失优化的神经网络框架MCP-Net,用于全身动态PET图像的帧间运动校正 直接减少Patlak拟合误差,并结合了功能信息,提高了模型的性能和泛化能力 NA 改进全身动态PET图像的帧间运动校正,提高参数成像的准确性 全身动态PET图像的帧间运动校正 计算机视觉 NA 动态正电子发射断层扫描(PET) 神经网络 图像 NA NA NA NA NA
40 2024-10-15
A bibliometric analysis of worldwide cancer research using machine learning methods
2023-Jun, Cancer innovation
研究论文 本文通过文献计量分析方法,研究了2011年至2021年间使用机器学习方法进行癌症研究的全球趋势和热点 本文首次对全球范围内使用机器学习方法进行癌症研究的文献进行了全面的文献计量分析,揭示了该领域的研究热点和发展趋势 本文仅基于PubMed数据库中的6206篇文献进行分析,可能未能涵盖所有相关研究 分析全球范围内使用机器学习方法进行癌症研究的最新研究现状、主要研究主题、主题演变、研究合作和潜在研究方向 2011年至2021年间PubMed数据库中收集的6206篇关于使用机器学习方法进行癌症研究的文献 机器学习 癌症 文献计量分析 Latent Dirichlet Allocation 文本 6206篇文献 NA NA NA NA
回到顶部