本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2024-09-30 |
Recent Advances in Melanoma Diagnosis and Prognosis Using Machine Learning Methods
2023-06, Current oncology reports
IF:4.7Q1
DOI:10.1007/s11912-023-01407-3
PMID:37000340
|
综述 | 总结了人工智能和机器学习在黑色素瘤诊断和管理中的当前作用和状态 | 深度学习算法能够从临床、皮肤镜和全切片病理图像中识别黑色素瘤,准确性不断提高 | 需要更高质量的输入数据以进一步提高模型的能力 | 总结人工智能和机器学习在黑色素瘤诊断和管理中的应用 | 黑色素瘤的诊断和管理 | 机器学习 | 皮肤癌 | 深度学习 | 深度学习算法 | 图像 | NA |
22 | 2024-09-28 |
Motivation for using data-driven algorithms in research: A review of machine learning solutions for image analysis of micrographs in neuroscience
2023-06-20, Journal of neuropathology and experimental neurology
IF:3.2Q2
DOI:10.1093/jnen/nlad040
PMID:37244652
|
综述 | 本文综述了机器学习在神经科学中用于显微图像分析的应用及其潜力和局限性 | 本文探讨了深度学习模型在显微镜图像查看器中的集成,降低了使用新算法的门槛 | 对于不熟悉机器学习算法的研究人员,陡峭的学习曲线可能阻碍这些方法在其工作流程中的成功实施 | 探讨机器学习在神经科学中的应用及其潜力和局限性,并提供选择合适框架的指导 | 机器学习算法在神经科学显微图像分析中的应用 | 计算机视觉 | NA | 机器学习 | 深度学习 | 图像 | NA |
23 | 2024-09-28 |
SnapEnsemFS: a snapshot ensembling-based deep feature selection model for colorectal cancer histological analysis
2023-06-19, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-36921-8
PMID:37336964
|
研究论文 | 提出了一种基于快照集成学习的深度特征选择模型,用于结直肠癌的组织学分析 | 采用快照集成方法从卷积神经网络模型的倒数第二层提取深度特征,并通过粒子群优化进行特征降维和分类 | NA | 开发一种自动化的计算机辅助检测框架,用于结直肠癌的早期诊断 | 结直肠癌的组织学图像 | 计算机视觉 | 结直肠癌 | 卷积神经网络 (CNN) | CNN | 图像 | 使用公开的结直肠癌组织学数据集进行五折交叉验证 |
24 | 2024-09-23 |
Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders
2023-06-30, Cells
IF:5.1Q2
DOI:10.3390/cells12131755
PMID:37443789
|
研究论文 | 本文探讨了人工智能在血液病诊断细胞学和基因检测中的应用 | 机器学习和深度学习模型在血液病领域的应用,包括数字病理学、α地中海贫血患者筛查、细胞遗传学、免疫表型和测序 | 数据库有限、缺乏验证和标准化、系统误差和偏差,以及数据隐私问题 | 研究人工智能在血液病诊断中的应用及其潜在影响 | 血液病诊断中的细胞学和基因检测 | 计算机科学 | 血液病 | 机器学习、深度学习 | NA | 数据 | NA |
25 | 2024-09-23 |
Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey
2023-Jun-29, Biomedicines
IF:3.9Q1
DOI:10.3390/biomedicines11071858
PMID:37509498
|
综述 | 本文综述了人工智能在基于DTI和fMRI的孤独症诊断中的作用 | 探讨了深度学习在处理脑部MRI数据以提高孤独症诊断能力方面的应用 | NA | 探讨人工智能在孤独症诊断和检测中的应用 | 孤独症谱系障碍(ASD)的诊断和检测 | 计算机视觉 | 孤独症 | MRI | 深度学习 | 图像 | NA |
26 | 2024-09-23 |
Deep learning enables fast, gentle STED microscopy
2023-06-27, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-023-05054-z
PMID:37369761
|
研究论文 | 本文报道了利用深度学习恢复STED显微镜图像,从而减少光漂白和光损伤,提高成像速度和质量 | 通过深度学习恢复STED图像,显著减少了像素停留时间,从而降低了光漂白和光损伤 | NA | 提高STED显微镜成像的速度和质量,减少光损伤 | STED显微镜图像的恢复和优化 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 多个2D和3D STED图像 |
27 | 2024-09-23 |
Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM
2023-Jun-27, Sensors (Basel, Switzerland)
DOI:10.3390/s23135960
PMID:37447810
|
研究论文 | 本文提出了一种基于WaveNet和LSTM的深度学习模型,用于自动检测异常脑电图信号 | 本文创新性地结合了WaveNet和LSTM两种模型,通过多重消融实验证明了其有效性和重要性,并在TUAB和TUEP数据集上取得了优于现有最先进研究的分类准确率 | NA | 旨在开发一种自动化的方法,用于早期识别脑电图记录中的脑病理特征,以辅助神经疾病的诊断和管理 | 异常脑电图信号的自动检测 | 机器学习 | NA | NA | WaveNet和LSTM | 脑电图数据 | 使用了TUH异常脑电图语料库V.2.0.0 (TUAB) 和另一个独立数据集TUEP进行评估 |
28 | 2024-09-23 |
Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework
2023-Jun-26, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging9070130
PMID:37504807
|
研究论文 | 本文提出了一种基于级联双注意力卷积神经网络和双向门控循环单元框架的人类活动识别方法 | 本文创新性地结合了双注意力机制和双向门控循环单元,以提高模型在人类活动识别任务中的准确性和计算效率 | NA | 提高基于视频的人类活动识别任务的准确性和计算效率 | 人类活动识别 | 计算机视觉 | NA | 卷积神经网络 (CNN), 门控循环单元 (GRU) | 双注意力卷积神经网络 (DA-CNN), 双向门控循环单元 (Bi-GRU) | 视频 | 三个公开的人类活动数据集 |
29 | 2024-09-23 |
Closed-Chain Inverse Dynamics for the Biomechanical Analysis of Manual Material Handling Tasks through a Deep Learning Assisted Wearable Sensor Network
2023-Jun-25, Sensors (Basel, Switzerland)
DOI:10.3390/s23135885
PMID:37447734
|
研究论文 | 本文提出了一种基于深度学习和可穿戴传感器网络的闭链逆动力学算法,用于分析手动物料搬运任务中的生物力学负荷 | 本文提出了一种新颖的、计算效率高的算法,并在ROS中实现,用于分析人体肌肉骨骼系统的生物力学,同时提出了一种基于深度学习物体识别的方法来估计负载及其分布 | 需要改进步态分割以减少估计的下肢关节力矩的不连续性 | 开发一种深度学习辅助的可穿戴传感器系统,用于在线评估操作员在手动物料搬运任务中施加的生物力学负荷 | 手动物料搬运任务中的生物力学负荷 | 生物力学 | NA | 深度学习 | 深度学习模型 | 运动数据 | NA |
30 | 2024-09-23 |
Deciphering Phage-Host Specificity Based on the Association of Phage Depolymerases and Bacterial Surface Glycan with Deep Learning
2023-Jun-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.06.16.545366
PMID:37503040
|
研究论文 | 本文开发了一种基于ESM-2蛋白质语言模型的方法SpikeHunter,用于识别噬菌体尾丝蛋白,并分析其与细菌表面糖类的关联 | 首次使用深度学习方法解析噬菌体与宿主特异性关系,并成功识别大量尾丝蛋白 | NA | 解析噬菌体尾丝蛋白与细菌表面糖类的关联,以揭示噬菌体与宿主的特异性关系 | 噬菌体尾丝蛋白及其与细菌表面糖类的关联 | 机器学习 | NA | 深度学习 | ESM-2蛋白质语言模型 | 基因组数据 | 8,434,494个原噬菌体,来自165,365个五种常见病原体的基因组 |
31 | 2024-09-23 |
Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease
2023-Jun-15, bioRxiv : the preprint server for biology
DOI:10.1101/2023.02.10.528046
PMID:37205343
|
meta-analysis | 本文通过系统评价和荟萃分析,建立了包含健康和疾病状态下脑代谢物浓度及T2弛豫时间期望值和范围的开源数据库 | 开发了一个开源数据库,包含健康和疾病状态下脑代谢物的浓度和T2弛豫时间的期望值和范围,为数据模拟和深度学习算法开发提供了参考 | 缺乏真实数据作为验证基准 | 确定脑代谢物的生理范围和弛豫率,用于数据模拟和参考估计 | 健康和疾病状态下的脑代谢物浓度及T2弛豫时间 | NA | NA | 磁共振波谱(MRS) | NA | 数据模拟 | NA |
32 | 2024-09-23 |
Modification of a Conventional Deep Learning Model to Classify Simulated Breathing Patterns: A Step toward Real-Time Monitoring of Patients with Respiratory Infectious Diseases
2023-Jun-15, Sensors (Basel, Switzerland)
DOI:10.3390/s23125592
PMID:37420758
|
研究论文 | 本文研究了如何通过改进传统的深度学习模型来分类模拟呼吸模式,以实现对呼吸道传染病患者的实时监测 | 本文提出了一种基于深度卷积神经网络(CNN)的分类算法,用于实时分类和监测呼吸模式,并改进了预激活残差网络(Pre-ResNet)以适应一维数据 | 研究样本仅包括21名健康志愿者,且仅在三种不同的呼吸条件下进行测试 | 开发一种实时分类和监测呼吸模式的方法,以帮助监测呼吸道传染病患者 | 呼吸模式和组织血流动力学响应 | 机器学习 | 呼吸道传染病 | 近红外光谱(NIRS) | 深度卷积神经网络(CNN) | 一维数据 | 21名健康志愿者 |
33 | 2024-09-23 |
Quantization of extraoral free flap monitoring for venous congestion with deep learning integrated iOS applications on smartphones: a diagnostic study
2023-Jun-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000000391
PMID:37055021
|
研究论文 | 本文开发并验证了一种基于深度学习的iOS应用程序,用于量化自由皮瓣监测中的静脉充血情况 | 首次将深度学习技术集成到智能手机应用程序中,用于自动监测和量化自由皮瓣的静脉充血情况 | 研究仅在单一微手术重症监护单元进行,样本量有限 | 开发一种能够科学监测和量化自由皮瓣状况的工具,以提高患者安全和术后管理 | 自由皮瓣的静脉充血情况 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 共分析了642名患者的1761张照片,其中122名患者在临床应用期间被纳入 |
34 | 2024-09-21 |
Detecting common coccinellids found in sorghum using deep learning models
2023-06-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-36738-5
PMID:37328502
|
研究论文 | 本文开发并训练了深度学习模型,用于检测和分类高粱中常见的瓢虫 | 首次开发了用于高粱中瓢虫检测和分类的深度学习模型 | NA | 开发自动化技术以检测和分类高粱中的瓢虫,减少对杀虫剂的依赖 | 高粱中常见的七种瓢虫 | 计算机视觉 | NA | 深度学习 | Faster R-CNN, YOLOv5, YOLOv7 | 图像 | 从iNaturalist项目中提取的图像 |
35 | 2024-09-21 |
Detecting stress caused by nitrogen deficit using deep learning techniques applied on plant electrophysiological data
2023-06-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-36683-3
PMID:37316610
|
研究论文 | 本文利用深度学习技术分析植物电生理数据,检测由氮缺乏引起的植物应激反应 | 本文首次将深度学习技术应用于植物电生理记录中识别植物应激反应,无需预先计算特征,自动学习分类目标 | NA | 检测由氮缺乏引起的植物应激反应 | 16株在典型生产条件下生长的番茄植物的电生理数据 | 机器学习 | NA | 深度学习 | NA | 电生理数据 | 16株番茄植物 |
36 | 2024-09-21 |
Bayesian interpolation with deep linear networks
2023-Jun-06, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2301345120
PMID:37252994
|
研究论文 | 本文研究了深度、宽度和数据集大小对模型质量的联合影响,并给出了线性网络在特定条件下的完整解决方案 | 提出了一个新的有效深度概念,并展示了无限深度线性网络在数据无关先验下的最优预测能力 | 研究仅限于输出维度为一的线性网络,并使用零噪声贝叶斯推断和均方误差作为负对数似然 | 探讨神经网络深度、宽度和数据集大小对模型质量的联合影响 | 线性网络在特定条件下的预测后验和贝叶斯模型证据 | 机器学习 | NA | 贝叶斯推断 | 线性网络 | 数值数据 | NA |
37 | 2024-09-21 |
An end-to-end deep learning method for protein side-chain packing and inverse folding
2023-06-06, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2216438120
PMID:37253017
|
研究论文 | 提出了一种端到端的深度学习方法AttnPacker,用于蛋白质侧链包装和逆折叠 | AttnPacker直接利用骨架3D几何结构同时计算所有侧链坐标,无需依赖离散的旋转异构体库或进行昂贵的构象搜索和采样步骤,显著提高了计算效率 | NA | 解决蛋白质侧链包装问题,提高蛋白质结构预测、优化和设计的速度和准确性 | 蛋白质侧链构象 | 机器学习 | NA | 深度学习 | NA | 蛋白质结构数据 | CASP13和CASP14中的天然和非天然蛋白质骨架 |
38 | 2024-09-21 |
Digital labeling for 3D histology: segmenting blood vessels without a vascular contrast agent using deep learning
2023-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.480230
PMID:37342724
|
研究论文 | 本文介绍了一种基于深度学习的数字标记方法,用于在3D组织学中无需血管对比剂即可分割血管 | 使用U-net架构的深度学习神经网络,采用回归损失而非常用的分割损失,以更好地检测小血管 | NA | 开发一种无需血管对比剂的3D组织学血管分割方法 | 3D组织学中的血管 | 数字病理学 | NA | 深度学习 | U-net | 图像 | NA |
39 | 2024-09-21 |
Variation in foraging activity influences area-restricted search behaviour by bottlenose dolphins
2023-Jun, Royal Society open science
IF:2.9Q1
DOI:10.1098/rsos.221613
PMID:37325592
|
研究论文 | 研究了宽吻海豚的区域限制搜索行为与其觅食活动之间的关系 | 利用被动声学监测和基于深度学习的技术,首次提供了宽吻海豚区域限制搜索行为的一个驱动因素的实证证据 | 研究仅限于特定种群的宽吻海豚,且依赖于特定的声学数据 | 探讨区域限制搜索行为在海洋系统中的驱动因素 | 宽吻海豚的区域限制搜索行为及其与觅食活动的关系 | NA | NA | 被动声学监测 | 卷积神经网络 | 声学数据 | 特定种群的宽吻海豚 |
40 | 2024-09-21 |
Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT
2023-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.488614
PMID:37342688
|
研究论文 | 本文提出了一种基于Mueller矩阵光学相干断层扫描(Mueller matrix OCT)和深度学习的非侵入性方法,用于定量分析斑马鱼多个器官在其生长过程中的发育情况 | 结合Mueller矩阵OCT和深度学习技术,首次实现了对斑马鱼多个器官发育过程的定量分析 | NA | 开发一种非侵入性的方法,用于定量分析斑马鱼多个器官在其生长过程中的发育情况 | 斑马鱼的多个器官,包括身体、眼睛、脊柱、卵黄囊和游泳膀胱 | 生物医学工程 | NA | Mueller矩阵光学相干断层扫描(Mueller matrix OCT) | U-Net网络 | 三维图像 | 从第1天到第19天的斑马鱼胚胎 |