本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141 | 2024-08-07 |
Signal Improved ultra-Fast Light-sheet Microscope (SIFT) for large tissue imaging
2023-Jun-28, Research square
DOI:10.21203/rs.3.rs-2990328/v1
PMID:37461705
|
研究论文 | 本文介绍了一种改进的超快速光片显微镜(SIFT),用于大组织成像,通过精确控制两个固定距离的光片焦点来实现ASLM,提高了成像速度和信号强度 | 提出的SIFT技术将成像速度提高了四倍,并在特定帧率下将信号强度提高了一倍,同时开发了基于深度学习的组织信息分类器,以加速组织边界的确定 | NA | 提高大组织成像的速度和质量 | 大组织样本 | 生物医学成像 | NA | 光片荧光显微镜(LSFM) | 深度学习模型 | 图像 | 多种已清除的组织样本 |
142 | 2024-08-07 |
Efficacy of Smartphone-Based Telescreening for Retinopathy of Prematurity With and Without Artificial Intelligence in India
2023-06-01, JAMA ophthalmology
IF:7.8Q1
DOI:10.1001/jamaophthalmol.2023.1466
PMID:37166816
|
研究论文 | 本研究评估了智能手机基底眼底成像系统(SBFI)与广域数字眼底成像(WDFI)在早产儿视网膜病变(ROP)筛查中的有效性,并比较了人工智能(AI)和人工评分者的表现 | 本研究首次在实际的远程医疗环境中测试了SBFI系统,并结合AI技术进行ROP筛查 | 研究仅在一个中心进行,且样本量相对较小 | 评估SBFI系统在ROP筛查中的有效性,并比较AI和人工评分者的表现 | 早产儿视网膜病变(ROP)的筛查 | 数字病理学 | 早产儿视网膜病变 | 智能手机基底眼底成像(SBFI) | ResNet18深度学习架构 | 图像 | 156名早产儿(312只眼) |