深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202307-202307] [清除筛选条件]
当前共找到 142 篇文献,本页显示第 101 - 120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
101 2024-08-07
Applications of Artificial Intelligence and Deep Learning in Glaucoma: Erratum
2023 Jul-Aug 01, Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
NA NA NA NA NA NA NA NA NA NA NA NA
102 2024-08-04
Automatic Visual Acuity Loss Prediction in Children with Optic Pathway Gliomas using Magnetic Resonance Imaging
2023-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究旨在通过多序列磁共振成像准确预测患有视路胶质瘤的儿童的视觉敏锐度丧失 提出了一种自动化深度学习框架,包括基于变换器的分割网络和机器学习方法用于预测视觉丧失 对于视觉丧失的风险预测依然存在挑战,特别是确定哪些儿童需要预防性治疗 研究通过MRI特征分析帮助早期预测NF1-OPG儿童的视觉结果 研究对象为75名患有NF1-OPG的儿童 数字病理学 视路胶质瘤 磁共振成像 基于变换器的分割网络 图像 75名儿童
103 2024-08-05
Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell
2023-07-25, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
研究论文 本研究开发了基于深度学习的TEM图像分析方法,用于全自动检测肿瘤细胞内的金纳米颗粒 本研究的创新点在于提出了一种全自动的深度学习方法,能够有效检测细胞TEM图像中的金纳米颗粒 有可能受到转移学习和模型调整的效果限制 本研究旨在提高金纳米颗粒在肿瘤细胞内定量分析的准确性和效率 研究对象为含金纳米颗粒的肿瘤细胞的TEM图像 计算机视觉 癌症 深度学习,传输学习 YOLO v5 图像 78张原始TEM图像(12040张增强图像)
104 2024-08-05
Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications
2023-07-24, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种基于无监督深度学习的血管壁位移估计方法 创新性地应用无监督深度学习方法提高血管壁位移估计的质量 未在真实病例中进行广泛测试 旨在提高血管弹性成像的准确性和分辨率 研究对象包括人类颈动脉及其脉搏波传播的跟踪 数字病理学 心血管疾病 超声弹性成像 深度学习网络 图像,超声RF信号 通过模型训练涉及多种超声数据集,具体样本数未说明
105 2024-08-05
Investigation of the best effective fold of data augmentation for training deep learning models for recognition of contiguity between mandibular third molar and inferior alveolar canal on panoramic radiographs
2023-Jul, Clinical oral investigations IF:3.1Q1
研究论文 本研究旨在使用全景放射影像训练深度学习模型,以识别下颌第三磨牙与下 alveolar 管之间的连续性,并探索最佳的数据增强折数 该研究探讨了在训练深度学习模型时,数据增强不同折数对模型识别性能的影响 不同增强折数间虽然没有显著差异,但最高的AUC并没有在所有模型中表现出一致性 研究旨在提高深度学习模型识别下颌第三磨牙与下 alveolar 管之间连续性的能力 研究对象为1800张经过裁剪的下颌第三磨牙影像 数字病理学 NA 深度学习模型 AlexNet, VGG-16, GoogLeNet 图像 1800张下颌第三磨牙裁剪影像
106 2024-08-05
Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network
2023-Jul, Journal of medical imaging (Bellingham, Wash.)
研究论文 本研究提出了一种几何深度学习模型,用于缺血性脑卒中的病灶分割。 本文创新性地使用了全卷积图网络,并结合样条卷积和图结构特征来改进缺血性脑卒中病灶的预测。 本研究没有使用优化的训练方法,如数据增强或补丁处理,这可能影响模型表现的进一步提升。 研究旨在提高缺血性脑卒中病灶的分割准确性,以便为临床干预提供支持。 研究对象为缺血性脑卒中病灶的CT灌注参数图像数据。 计算机视觉 脑卒中 CT灌注参数 全卷积图网络 图像 NA
107 2024-08-05
iQDeep: an integrated web server for protein scoring using multiscale deep learning models
2023-07-15, Journal of molecular biology IF:4.7Q1
研究论文 本文介绍了一个集成的网络服务器iQDeep,用于蛋白质评分,采用多尺度深度学习模型 iQDeep提供了一个独立且开放访问的蛋白质评分系统,针对多种预测建模场景进行了优化 NA 旨在提供一个可靠的蛋白质评分方法,提高蛋白质结构预测的准确性 主要研究对象为蛋白质及其结构预测 数字病理学 NA 多尺度深度残差神经网络(ResNets) 深度残差神经网络 结构数据 在多个CASP实验中进行了广泛测试和比较
108 2024-08-05
HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery
2023-07-11, Immunity IF:25.5Q1
研究论文 本研究通过单等位基因免疫肽组学分析HLA-II结合体,结合深度学习,揭示抗原特征以辅助抗原发现 创新性地开发了基于深度学习的模型CAPTAn,用于预测与HLA-II亲和力相关的肽抗原 目前对影响抗原呈递的因素理解仍不完全,且在配体数据库中多样性等位基因的代表性不足 研究HLA-II抗原结合体的特征,以提供新的抗原发现工具 358,024个HLA-II结合肽,特别关注HLA-DQ和HLA-DP 数字病理学 NA 单等位基因免疫肽组学 深度学习模型(CAPTAn) PEPTIDES NA
109 2024-08-05
Radiomic and deep learning characterization of breast parenchyma on full field digital mammograms and specimen radiographs: a pilot study of a potential cancer field effect
2023-Jul, Journal of medical imaging (Bellingham, Wash.)
研究论文 本研究探讨了乳腺组织的放射组学和深度学习特征与乳腺X线摄影图像之间的关系 首次将放射组学和深度学习特征应用于分析肿瘤与非肿瘤区域之间的潜在癌症场效应 本研究样本量较小,仅包括74名患者,可能影响结果的广泛适用性 研究乳腺X线摄影图像中的组织特征与潜在癌症场效应的关系 74名确诊为乳腺癌的女性患者的X线摄影图像和切除标本放射图像 数字病理学 乳腺癌 放射组学 深度学习 图像 74名患者的乳腺X线摄影图像和32名患者的切除标本放射图像
110 2024-08-05
Heart-Brain 346-7 Score: the development and validation of a simple mortality prediction score for carbon monoxide poisoning utilizing deep learning
2023-07, Clinical toxicology (Philadelphia, Pa.)
研究论文 开发并验证了一种简单的死亡风险预测评分系统,针对一氧化碳中毒患者 提出并验证了Heart-Brain 346-7评分系统,以根据特定变量预测一氧化碳中毒患者的住院和长期死亡风险 本研究的有效性需要进一步验证,且主要依赖于电子病历数据 研究旨在识别患有一氧化碳中毒的患者的急性和长期死亡风险 研究对象为811名一氧化碳中毒的成人患者与462名验证队列患者 数字病理学 NA Firth逻辑回归 NA 电子病历数据 811名在开发队列中的患者和462名在验证队列中的患者
111 2024-08-05
A comprehensive multi-domain dataset for mitotic figure detection
2023-07-25, Scientific data IF:5.8Q1
研究论文 本文介绍了用于有丝分裂细胞检测的综合多领域数据集MIDOG++ 该数据集是第一个基于不同肿瘤类型、实验室、全切片图像扫描仪和物种的广泛领域转移的有丝分裂细胞数据集 在单一领域训练中观察到显著差异,可能影响深度学习方法的性能 本文旨在自动化有丝分裂细胞检测任务,并评估领域转移的影响 本文研究对象为503个来自七种不同肿瘤类型的组织标本 数字病理学 乳腺癌, 肺癌, 淋巴肉瘤, 神经内分泌肿瘤, 皮肤肥大细胞肿瘤, 皮肤黑色素瘤, (亚)皮下软组织肉瘤 深度学习 NA 图像 503个组织标本
112 2024-08-05
Quantitative Assessment of Myocardial Ischemia With Positron Emission Tomography
2023-Jul-01, Journal of thoracic imaging IF:2.0Q3
研究论文 本文探讨了正电子发射断层扫描(PET)技术在评估心肌缺血中的定量应用 文章介绍了多种PET心肌灌注成像放射药物的特点及其对心肌血流的定量影响 未提及具体的临床应用或患者样本 研究心肌缺血的定量评估方法 多种PET放射药物及其在心肌灌注成像中的应用 数字病理学 心血管疾病 正电子发射断层扫描(PET) 组织隔室模型 成像数据 NA
113 2024-08-05
Automatic Measuring of Finger Joint Space Width on Hand Radiograph using Deep Learning and Conventional Computer Vision Methods
2023-Jul, Biomedical signal processing and control IF:4.9Q1
研究论文 本文提出了两种方法自动测量手部X光片上的关节间隙宽度(JSW) 提出了基于传统计算机视觉和深度学习的两种新方法来自动化JSW测量 目前方法需要标记真实的JSW数据,可能影响结果的普适性 自动化测量手部关节间隙宽度以提高评估效率 3,591张手部X光图像和10,845个指间关节 计算机视觉 关节炎 深度学习,传统计算机视觉 VGG-19,U-Net 图像 3,591张手部X光片
114 2024-08-05
High-fidelity Database-free Deep Learning Reconstruction for Real-time Cine Cardiac MRI
2023-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究提出了一种无数据库的深度学习重建方法,用于实时cine心脏MRI。 采用零-shot自监督物理引导深度学习重建,克服了需要数据库学习的挑战,允许特定患者的训练。 该方法在复杂的呼吸和心动模式下的广泛应用仍然面临挑战。 旨在通过改进重建技术提高实时cine心脏MRI的成像质量。 研究对象为心脏MRI成像中的患者群体。 数字病理学 心血管疾病 深度学习重建 无数据库学习模型 影像 未提供样本大小的具体信息
115 2024-08-05
An artificial intelligence platform provides an accurate interpretation of esophageal motility from Functional Lumen Imaging Probe Panometry studies
2023-07, Neurogastroenterology and motility IF:3.5Q2
研究论文 本研究旨在开发和测试一个能够解读FLIP Panometry研究的自动化人工智能平台 该研究首次提出使用深度学习AI模型生成FLIP Panometry热图并进行食管运动标签的分配 研究仅在一个中心进行,可能影响结果的广泛适用性 开发一个能够准确解读FLIP Panometry研究的人工智能平台 678名连续患者和35名无症状对照进行FLIP Panometry检查 机器学习 食管疾病 人工智能 卷积神经网络(CNN) 图像 678名患者和35名对照
116 2024-08-05
Interleaved signal multiplexing readout in depth encoding Prism-PET detectors
2023-Jul, Medical physics IF:3.2Q1
研究论文 本文介绍了一种交错信号复用方案,利用深度编码Prism-PET探测器模块的光共享特性。 提出了iMux复用方案,实现了16比1的晶体到读出复用而不明显降低性能。 研究中未提及复用的实际应用限制或潜在的问题。 研究的目的是优化临床正电子发射断层扫描仪中的信号读出,以降低复杂性和成本。 研究对象为使用iMux方案的Prism-PET探测器模块及其深度学习去复用模型。 计算机视觉 NA 深度学习 NA 信号 16×16阵列的LYSO闪烁晶体和8×8阵列的SiPM像素
117 2024-08-05
Deep Learning Approaches for Glioblastoma Prognosis in Resource-Limited Settings: A Study Using Basic Patient Demographic, Clinical, and Surgical Inputs
2023-07, World neurosurgery IF:1.9Q2
研究论文 本研究评估了不同新型深度学习模型在资源有限环境中对胶质母细胞瘤预后的预测能力 提出了一种基于简单临床、人口统计和手术变量的新型深度学习模型 研究模型的准确性可能受到健康基础设施受限区域的影响 研究旨在提高胶质母细胞瘤患者的预后预测准确性 分析了37,095名胶质母细胞瘤患者的数据 机器学习 胶质母细胞瘤 深度学习 概率矩阵分解、多任务逻辑回归、逻辑风险模型 临床和人口统计数据 37,095名患者
118 2024-08-05
HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis
2023-Jul, Computational mechanics IF:3.7Q1
研究论文 本文提出了一种基于HiDeNN近似的非线性有限元框架 引入了三种基本构建模块,实现了非线性有限元分析的深度学习网络应用 未提及具体的限制 开发一种无缝的机器学习方法用于非线性有限元分析 研究采用HiDeNN近似的非线性有限元模型 机器学习 NA 深度学习 NA 数值数据 2D和3D的数值示例
119 2024-08-05
On the effect of training database size for MR-based synthetic CT generation in the head
2023-07, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 使用深度学习方法从磁共振(MR)图像生成计算机断层扫描(CT)图像的研究 探讨了训练数据库大小对头部基于MR的合成CT生成的影响 缺乏具体的训练数据库规模和模型性能比较 研究提高MR引导放射治疗和PET/MR成像中CT图像生成的有效性 使用深度学习生成CT图像的MR图像 计算机视觉 NA 深度学习 NA 图像 NA
120 2024-08-05
A Deep Learning Framework for Deriving Noninvasive Intracranial Pressure Waveforms from Transcranial Doppler
2023-07, Annals of neurology IF:8.1Q1
研究论文 本文设计了一个深度学习框架,用于从血压、心电图和脑血流速度中估算非侵入性颅内压。 提出了一种利用领域对抗神经网络的框架,以更准确地估计非侵入性颅内压,相较于现有方法具有更高的准确性。 未提及此研究的具体限制 研究非侵入性监测颅内压的方法,以减少患者的侵入性检查风险。 使用血压、心电图和脑血流速度数据进行颅内压估算。 机器学习 NA 深度学习 领域对抗神经网络 生理信号数据 NA
回到顶部