深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202309-202309] [清除筛选条件]
当前共找到 176 篇文献,本页显示第 41 - 60 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
41 2024-11-13
Deep convolutional neural network for hippocampus segmentation with boundary region refinement
2023-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了一种基于深度学习的海马体分割方法,通过边界区域细化来提高分割精度 本文创新性地引入了边界区域细化步骤,显著提高了海马体分割的准确性 NA 提高海马体从磁共振脑图像中的分割精度,以促进脑部疾病研究 海马体 计算机视觉 NA 深度学习 卷积神经网络 图像 使用了公开数据集进行验证
42 2024-11-07
Novel Muscle Sensing by Radiomyography (RMG) and Its Application to Hand Gesture Recognition
2023-Sep, IEEE sensors journal IF:4.3Q2
研究论文 本文提出了一种新的肌肉感应技术——放射肌电图(RMG),并将其应用于手势识别 RMG技术能够连续监测肌肉活动,捕捉浅层和深层肌肉群,并可实现可穿戴或无接触式监测 NA 开发一种新的肌肉感应技术并验证其在手势识别中的应用 手势识别、眼部和腿部肌肉监测 计算机视觉 NA 放射肌电图(RMG) 视觉变换器(ViT) 时间-频率谱图 8名受试者
43 2024-10-21
Data-Driven Models for Predicting Intrinsically Disordered Protein Polymer Physics Directly from Composition or Sequence
2023-Sep-01, Molecular systems design & engineering IF:3.2Q3
研究论文 本文开发了新的无序蛋白质表示方法,并结合经典机器学习和深度学习模型预测无序蛋白质的回转半径和相关缩放指数 提出了一种新的基于氨基酸相互作用的表示方法,该方法在预测无序蛋白质的物理性质方面表现优异 研究仅限于粗粒度模拟数据,未来需要验证其在实验数据上的表现 开发新的计算方法来理解无序蛋白质的分子层面特性 无序蛋白质的回转半径和缩放指数 机器学习 NA 机器学习和深度学习 NA 序列 10,000个粗粒度模拟序列
44 2024-10-18
Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging
2023-09, AJR. American journal of roentgenology
研究论文 开发并验证了一种基于BERT的人工智能模型,用于识别放射学报告中包含额外影像建议的部分 使用BERT模型在识别放射学报告中额外影像建议方面表现优于传统的机器学习模型 研究仅限于特定时间段和特定医疗机构的放射学报告 开发和验证一种人工智能模型,用于识别放射学报告中包含额外影像建议的部分 放射学报告中的额外影像建议 机器学习 NA BERT BERT 文本 6300份放射学报告,涉及7419名患者
45 2024-10-15
A deep learning-based dynamic model for predicting acute kidney injury risk severity in postoperative patients
2023-09, Surgery IF:3.2Q1
研究论文 本文开发了一种基于循环神经网络的动态模型,用于预测术后患者急性肾损伤的风险和严重程度 提出了一个基于循环神经网络的动态模型,能够更精细和动态地建模急性肾损伤状态,并实现更连续和准确的预测 NA 开发和验证一种新的模型,用于预测术后患者急性肾损伤的风险和严重程度 术后急性肾损伤的风险和严重程度 机器学习 肾脏疾病 循环神经网络 RNN 数值数据 42,906名手术患者
46 2024-10-14
Challenges and solutions of echocardiography generalization for deep learning: a study in patients with constrictive pericarditis
2023-Sep, Journal of medical imaging (Bellingham, Wash.)
研究论文 本文提出了一种创新的自动化框架,用于解决在限制性心包炎和心脏淀粉样变性区分任务中,超声心动图深度学习模型泛化的问题 提出了一个创新的预处理和图像泛化框架,用于处理图像以训练ResNet50、ResNeXt101和EfficientNetB2模型 NA 开发一种基于超声心动图的深度学习模型,能够准确区分限制性心包炎、心脏淀粉样变性和正常病例 限制性心包炎和心脏淀粉样变性患者以及正常病例的超声心动图图像 机器学习 心血管疾病 深度学习 EfficientNetB2 图像 945例超声心动图研究,包括720例来自Mayo Rochester和225例来自Mayo Arizona
47 2024-10-13
Transcriptome-wide marker gene expression analysis of stress-responsive sulfate-reducing bacteria
2023-09-27, Scientific reports IF:3.8Q1
研究论文 研究分析了硫酸盐还原菌在环境压力下的转录组标记基因表达 使用转录组标记基因面板映射和基因聚类分析方法,揭示了四种硫酸盐还原菌在压力下的基因调控机制 NA 分析硫酸盐还原菌在环境压力下的遗传机制 四种硫酸盐还原菌的转录组标记基因 基因组学 NA RNA测序 深度学习 基因数据 4种硫酸盐还原菌的基因组
48 2024-10-13
Non-inferiority of deep learning ischemic stroke segmentation on non-contrast CT within 16-hours compared to expert neuroradiologists
2023-09-26, Scientific reports IF:3.8Q1
研究论文 研究使用卷积神经网络(CNN)深度学习模型在非对比CT上对急性缺血性卒中进行分割,并与神经放射科专家的分割结果进行比较 首次展示了深度学习模型在非对比CT上对急性缺血性卒中进行分割的非劣效性,与经验丰富的神经放射科专家相当 研究样本量较小,仅包括232例急性缺血性卒中患者,可能影响结果的普适性 验证深度学习模型在非对比CT上对急性缺血性卒中进行分割的准确性,并与神经放射科专家的分割结果进行比较 急性缺血性卒中患者的非对比CT图像 计算机视觉 中风 卷积神经网络(CNN) CNN 图像 232例急性缺血性卒中患者
49 2024-10-13
Probabilistic generative transformer language models for generative design of molecules
2023-Sep-25, Journal of cheminformatics IF:7.1Q1
研究论文 本文提出了一种基于概率生成转换器的分子生成模型,用于有机分子的生成设计 该模型基于空白填充语言模型,具有高质量生成、可解释性和数据效率高的优势 NA 开发一种可解释且高效的分子生成模型 有机分子 自然语言处理 NA NA Transformer 文本 使用MOSES数据集进行基准测试
50 2024-10-13
A review of PET attenuation correction methods for PET-MR
2023-Sep-11, EJNMMI physics IF:3.0Q2
综述 本文综述了PET-MR系统中PET衰减校正方法的最新进展 本文将PET衰减校正方法分为四类:基于MR的、基于发射的、基于图谱的和基于机器学习的,并详细讨论了每种方法的优缺点 本文未提供具体的实验数据或结果,而是侧重于方法的分类和讨论 探讨PET-MR系统中PET衰减校正方法的现状和未来发展方向 PET-MR系统中的PET衰减校正方法 计算机视觉 NA 深度学习 深度学习模型 图像 NA
51 2024-10-12
Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype
2023 Sep-Oct, IEEE/ACM transactions on computational biology and bioinformatics
研究论文 研究利用深度图学习预测乳腺癌分子亚型 提出了一种基于多关系有向图的深度学习方法,结合多种诊断学科的患者信息,以更好地表示乳腺癌患者数据并预测分子亚型 未提及具体局限性 研究如何利用深度图学习方法提高乳腺癌分子亚型的预测准确性 乳腺癌患者及其分子亚型 机器学习 乳腺癌 深度图学习 关系图卷积网络 图像和基因数据 未提及具体样本数量
52 2024-10-11
An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies
2023-Sep-14, bioRxiv : the preprint server for biology
研究论文 本研究通过挖掘研究出版物和专利,整理了超过5000个流感血凝素(HA)抗体的数据集,并开发了一种轻量级的记忆B细胞语言模型(mBLM)用于基于序列的抗体特异性预测 本研究创新性地开发了一种轻量级的记忆B细胞语言模型(mBLM),并成功应用于流感血凝素抗体的特异性预测 本研究的主要局限在于数据集的获取和模型的解释性分析 本研究的目的是开发一种可解释的语言模型,用于预测抗体的特异性 本研究主要研究对象是流感血凝素(HA)抗体 机器学习 NA NA 记忆B细胞语言模型(mBLM) 序列 超过5000个流感血凝素(HA)抗体
53 2024-10-08
Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction
2023-Sep-08, Patterns (New York, N.Y.)
研究论文 本文提出了一种基于深度学习的3D多模态融合框架,用于临床适用的牙骨重建 引入了Deep Dental Multimodal Fusion (DDMF)框架,结合了CBCT和IOS数据,采用新颖的像素表示学习架构、先验知识引导的损失函数和基于几何的3D融合技术 NA 开发一种自动化的多模态框架,用于高保真度的牙骨结构3D重建,以支持虚拟牙科治疗规划 牙骨结构的3D模型 计算机视觉 NA 深度学习 NA 图像 大规模真实世界数据集
54 2024-10-08
Task-based assessment of digital mammography microcalcification detection with deep learning denoising algorithmss using in silico and physical phantom studies
2023-Sep, Journal of medical imaging (Bellingham, Wash.)
研究论文 研究使用深度学习去噪算法在数字乳腺摄影微钙化检测中的任务评估,通过体内和物理模型研究 提出使用深度学习去噪算法来改善低剂量乳腺摄影图像质量,并探讨了训练数据集中信号存在区域的重要性 研究结果显示在物理模型和临床系统中,去噪后的半剂量乳腺摄影图像在微钙化信号检测方面没有明显改善 评估深度学习去噪算法在低剂量乳腺摄影图像中检测微钙化的效果 乳腺微钙化检测 计算机视觉 乳腺癌 深度学习去噪算法 卷积神经网络 图像 使用了一个人体模型物理幻影和数字压缩乳腺幻影进行研究
55 2024-10-02
Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning
2023-Sep-30, Molecules (Basel, Switzerland)
综述 本文综述了红外光谱分析的步骤,包括预处理、经典数据建模和深度学习 本文探讨了经典机器学习和深度学习在红外光谱分析中的最新进展 NA 探讨红外光谱分析中的预处理和数据建模方法 红外光谱数据及其在生物医学样本中的应用 机器学习 NA 红外光谱 经典机器学习模型和深度学习模型 光谱数据 NA
56 2024-10-02
Developments in Image Processing Using Deep Learning and Reinforcement Learning
2023-Sep-30, Journal of imaging IF:2.7Q3
review 本文综述了深度学习和强化学习在图像处理领域的最新进展和优化方案 本文讨论了图像处理应用中的主要改进和最新发展,并提出了未来研究方向 尽管取得了良好成果,但该领域仍面临许多挑战 探讨图像处理应用中的最新进展和未来研究方向 图像处理中的深度学习和强化学习技术 computer vision NA 深度学习和强化学习 NA image NA
57 2024-10-02
Self-Supervised Contrastive Learning to Predict the Progression of Alzheimer's Disease with 3D Amyloid-PET
2023-Sep-28, Bioengineering (Basel, Switzerland)
研究论文 本文提出了一种自监督对比学习方法SMoCo,用于基于3D淀粉样蛋白PET预测阿尔茨海默病的进展 本文首次将自监督对比学习应用于基于3D淀粉样蛋白PET预测轻度认知障碍向阿尔茨海默病的转化 本文仅在ADNI数据集上进行了验证,未来需要在更多数据集上进行验证 开发一种能够准确预测轻度认知障碍向阿尔茨海默病转化的深度学习模型 轻度认知障碍患者和3D淀粉样蛋白PET图像 计算机视觉 阿尔茨海默病 自监督对比学习 SMoCo 图像 ADNI数据集
58 2024-10-02
Simultaneous estimation of gene regulatory network structure and RNA kinetics from single cell gene expression
2023-Sep-23, bioRxiv : the preprint server for biology
研究论文 本文开发了一种深度学习模型,通过单细胞RNA测序数据同时推断基因调控网络结构和RNA动力学参数 首次提出了一种能够同时推断基因调控网络结构和RNA动力学参数的深度学习模型,并展示了其在预测基因表达状态和模拟转录因子变化效果方面的优越性 NA 构建一个完整的、预测性的生物物理模型,用于描述基因表达调控 基因调控网络结构和RNA动力学参数 机器学习 NA 单细胞RNA测序 深度学习模型 基因表达数据 175,000个单细胞样本
59 2024-10-01
Deep learning for risk-based stratification of cognitively impaired individuals
2023-Sep-15, iScience IF:4.6Q1
研究论文 本文利用深度学习模型结合生存分析,预测轻度认知障碍(MCI)患者向阿尔茨海默病(AD)转化的风险 本文创新性地将神经网络与生存分析相结合,用于预测MCI向AD的转化风险,并验证了模型预测的关键区域与AD经典相关区域的一致性 NA 开发一种基于风险的分类方法,用于识别轻度认知障碍(MCI)患者向阿尔茨海默病(AD)转化的风险 轻度认知障碍(MCI)患者及其向阿尔茨海默病(AD)的转化风险 机器学习 阿尔茨海默病 深度学习 神经网络 图像 发现队列544例,验证队列508例
60 2024-10-01
Efficient Dehazing with Recursive Gated Convolution in U-Net: A Novel Approach for Image Dehazing
2023-Sep-11, Journal of imaging IF:2.7Q3
研究论文 提出了一种基于递归门控卷积和注意力机制的U-Net去雾网络模型,以提高去雾性能并保持网络结构的简洁性 引入了改进的递归门控卷积机制替代原始U-Net的卷积块,并应用SK融合模块改进跳跃连接方法,设计了名为Dehaze Recursive Gated U-Net (DRGNet)的新型U-Net变体 NA 提高图像去雾任务的性能,同时简化网络架构的训练、推理和部署过程 图像去雾 计算机视觉 NA 递归门控卷积 U-Net 图像 公开数据集
回到顶部