本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2024-12-08 |
Deep representation learning identifies associations between physical activity and sleep patterns during pregnancy and prematurity
2023-Sep-28, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-023-00911-x
PMID:37770643
|
研究论文 | 研究利用深度学习时间序列分类架构,分析孕妇的体力活动和睡眠模式与早产之间的关系 | 开发了一种新的深度学习时间序列分类架构,并结合无监督聚类、模型误差分析、特征归因和自动活动分析等解释性算法,提高了模型对妊娠进展的预测能力 | 研究主要基于穿戴设备收集的数据,可能存在数据收集和处理的局限性 | 研究体力活动和睡眠模式与早产之间的关系,并开发预测模型以支持临床决策 | 孕妇的体力活动和睡眠模式 | 机器学习 | 妊娠相关疾病 | 深度学习 | 时间序列分类架构 | 时间序列数据 | 1083名患者,共收集了181,944小时的数据 |
62 | 2024-12-07 |
Deep learning empowering design for selective solar absorber
2023-Sep, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2023-0291
PMID:39635349
|
研究论文 | 本文开发了一种结合深度学习和多目标双重退火算法的高性能设计范式,用于优化多层纳米结构以最大化太阳能光谱吸收和最小化红外辐射 | 本文首次将深度学习与多目标双重退火算法结合,用于设计高性能的选择性太阳能吸收器 | 实验测量的红外辐射平均发射率略高于计算值,表明实际性能与理论设计之间存在一定差距 | 开发一种高效的设计方法,用于优化太阳能吸收器的性能 | 多层纳米结构的选择性太阳能吸收器 | NA | NA | 深度学习 | NA | NA | NA |
63 | 2024-12-06 |
Hyperspectral signature-band extraction and learning: an example of sugar content prediction of Syzygium samarangense
2023-09-12, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-41603-6
PMID:37699940
|
研究论文 | 本研究提出了一种从高光谱数据转换的多光谱数据中提取特征波段的方法,并使用深度学习模型预测山竹果的糖含量 | 本研究创新性地使用集成梯度方法从卷积神经网络和前馈神经网络模型中提取特征波段,并展示了这些波段在预测山竹果糖含量方面的潜力 | 本研究仅限于使用特定的光谱数据和模型,未来研究可以扩展到其他类型的光谱数据和模型 | 研究如何从高光谱数据中提取特征波段,并利用这些波段预测山竹果的糖含量 | 山竹果的糖含量 | 机器学习 | NA | 高光谱数据转换、集成梯度方法 | 卷积神经网络 (CNN)、前馈神经网络 (FNN) | 光谱数据 | 30组,每组包含6个特征波段 |
64 | 2024-11-27 |
Generative Adversarial Network-Enhanced Ultra-Low-Dose [18F]-PI-2620 τ PET/MRI in Aging and Neurodegenerative Populations
2023-09, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A7961
PMID:37591771
|
研究论文 | 研究使用生成对抗网络增强超低剂量[18F]-PI-2620 τ PET/MRI图像,以提高其在衰老和神经退行性疾病人群中的诊断质量 | 首次应用生成对抗网络增强超低剂量τ PET/MRI图像,以减少噪声并提高图像质量 | 研究样本量较小,且主要集中在健康衰老和神经退行性疾病患者,未来需扩大样本范围 | 探索深度学习技术在增强超低剂量τ PET/MRI图像中的应用,以提高诊断质量 | 健康衰老参与者和神经退行性疾病患者 | 计算机视觉 | 神经退行性疾病 | 生成对抗网络 | 生成对抗网络 | 图像 | 44名健康衰老参与者和神经退行性疾病患者 |
65 | 2024-11-15 |
Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications
2023-Sep-05, European journal of medicinal chemistry
IF:6.0Q1
DOI:10.1016/j.ejmech.2023.115500
PMID:37262996
|
综述 | 本文综述了小分子介导的微小RNA(miRNA)靶向药物发现中的生物学和计算应用 | 本文整合了实验室数据和计算策略,以促进更精确和理性的先导化合物设计和发现 | 目前缺乏涵盖计算和实验药物发现过程的综合性综述 | 综述miRNA靶向药物发现中的生物学和计算应用及其在疾病中的意义和临床重要性 | miRNA靶向的小分子抑制剂及其在疾病治疗中的潜力 | 药物发现 | NA | 深度学习 | NA | 分子序列 | NA |
66 | 2024-11-13 |
Deep convolutional neural network for hippocampus segmentation with boundary region refinement
2023-Sep, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-023-02836-9
PMID:37067776
|
研究论文 | 本文提出了一种基于深度学习的海马体分割方法,通过边界区域细化来提高分割精度 | 本文创新性地引入了边界区域细化步骤,显著提高了海马体分割的准确性 | NA | 提高海马体从磁共振脑图像中的分割精度,以促进脑部疾病研究 | 海马体 | 计算机视觉 | NA | 深度学习 | 卷积神经网络 | 图像 | 使用了公开数据集进行验证 |
67 | 2024-11-07 |
Novel Muscle Sensing by Radiomyography (RMG) and Its Application to Hand Gesture Recognition
2023-Sep, IEEE sensors journal
IF:4.3Q2
DOI:10.1109/jsen.2023.3294329
PMID:38510062
|
研究论文 | 本文提出了一种新的肌肉感应技术——放射肌电图(RMG),并将其应用于手势识别 | RMG技术能够连续监测肌肉活动,捕捉浅层和深层肌肉群,并可实现可穿戴或无接触式监测 | NA | 开发一种新的肌肉感应技术并验证其在手势识别中的应用 | 手势识别、眼部和腿部肌肉监测 | 计算机视觉 | NA | 放射肌电图(RMG) | 视觉变换器(ViT) | 时间-频率谱图 | 8名受试者 |
68 | 2024-10-21 |
Data-Driven Models for Predicting Intrinsically Disordered Protein Polymer Physics Directly from Composition or Sequence
2023-Sep-01, Molecular systems design & engineering
IF:3.2Q3
DOI:10.1039/D3ME00053B
PMID:38222029
|
研究论文 | 本文开发了新的无序蛋白质表示方法,并结合经典机器学习和深度学习模型预测无序蛋白质的回转半径和相关缩放指数 | 提出了一种新的基于氨基酸相互作用的表示方法,该方法在预测无序蛋白质的物理性质方面表现优异 | 研究仅限于粗粒度模拟数据,未来需要验证其在实验数据上的表现 | 开发新的计算方法来理解无序蛋白质的分子层面特性 | 无序蛋白质的回转半径和缩放指数 | 机器学习 | NA | 机器学习和深度学习 | NA | 序列 | 10,000个粗粒度模拟序列 |
69 | 2024-10-18 |
Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging
2023-09, AJR. American journal of roentgenology
DOI:10.2214/AJR.23.29120
PMID:37073901
|
研究论文 | 开发并验证了一种基于BERT的人工智能模型,用于识别放射学报告中包含额外影像建议的部分 | 使用BERT模型在识别放射学报告中额外影像建议方面表现优于传统的机器学习模型 | 研究仅限于特定时间段和特定医疗机构的放射学报告 | 开发和验证一种人工智能模型,用于识别放射学报告中包含额外影像建议的部分 | 放射学报告中的额外影像建议 | 机器学习 | NA | BERT | BERT | 文本 | 6300份放射学报告,涉及7419名患者 |
70 | 2024-10-15 |
A deep learning-based dynamic model for predicting acute kidney injury risk severity in postoperative patients
2023-09, Surgery
IF:3.2Q1
DOI:10.1016/j.surg.2023.05.003
PMID:37316372
|
研究论文 | 本文开发了一种基于循环神经网络的动态模型,用于预测术后患者急性肾损伤的风险和严重程度 | 提出了一个基于循环神经网络的动态模型,能够更精细和动态地建模急性肾损伤状态,并实现更连续和准确的预测 | NA | 开发和验证一种新的模型,用于预测术后患者急性肾损伤的风险和严重程度 | 术后急性肾损伤的风险和严重程度 | 机器学习 | 肾脏疾病 | 循环神经网络 | RNN | 数值数据 | 42,906名手术患者 |
71 | 2024-10-14 |
Challenges and solutions of echocardiography generalization for deep learning: a study in patients with constrictive pericarditis
2023-Sep, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.10.5.054502
PMID:37840850
|
研究论文 | 本文提出了一种创新的自动化框架,用于解决在限制性心包炎和心脏淀粉样变性区分任务中,超声心动图深度学习模型泛化的问题 | 提出了一个创新的预处理和图像泛化框架,用于处理图像以训练ResNet50、ResNeXt101和EfficientNetB2模型 | NA | 开发一种基于超声心动图的深度学习模型,能够准确区分限制性心包炎、心脏淀粉样变性和正常病例 | 限制性心包炎和心脏淀粉样变性患者以及正常病例的超声心动图图像 | 机器学习 | 心血管疾病 | 深度学习 | EfficientNetB2 | 图像 | 945例超声心动图研究,包括720例来自Mayo Rochester和225例来自Mayo Arizona |
72 | 2024-10-13 |
Transcriptome-wide marker gene expression analysis of stress-responsive sulfate-reducing bacteria
2023-09-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-43089-8
PMID:37758719
|
研究论文 | 研究分析了硫酸盐还原菌在环境压力下的转录组标记基因表达 | 使用转录组标记基因面板映射和基因聚类分析方法,揭示了四种硫酸盐还原菌在压力下的基因调控机制 | NA | 分析硫酸盐还原菌在环境压力下的遗传机制 | 四种硫酸盐还原菌的转录组标记基因 | 基因组学 | NA | RNA测序 | 深度学习 | 基因数据 | 4种硫酸盐还原菌的基因组 |
73 | 2024-10-13 |
Non-inferiority of deep learning ischemic stroke segmentation on non-contrast CT within 16-hours compared to expert neuroradiologists
2023-09-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-42961-x
PMID:37752162
|
研究论文 | 研究使用卷积神经网络(CNN)深度学习模型在非对比CT上对急性缺血性卒中进行分割,并与神经放射科专家的分割结果进行比较 | 首次展示了深度学习模型在非对比CT上对急性缺血性卒中进行分割的非劣效性,与经验丰富的神经放射科专家相当 | 研究样本量较小,仅包括232例急性缺血性卒中患者,可能影响结果的普适性 | 验证深度学习模型在非对比CT上对急性缺血性卒中进行分割的准确性,并与神经放射科专家的分割结果进行比较 | 急性缺血性卒中患者的非对比CT图像 | 计算机视觉 | 中风 | 卷积神经网络(CNN) | CNN | 图像 | 232例急性缺血性卒中患者 |
74 | 2024-10-13 |
Probabilistic generative transformer language models for generative design of molecules
2023-Sep-25, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-023-00759-z
PMID:37749655
|
研究论文 | 本文提出了一种基于概率生成转换器的分子生成模型,用于有机分子的生成设计 | 该模型基于空白填充语言模型,具有高质量生成、可解释性和数据效率高的优势 | NA | 开发一种可解释且高效的分子生成模型 | 有机分子 | 自然语言处理 | NA | NA | Transformer | 文本 | 使用MOSES数据集进行基准测试 |
75 | 2024-10-13 |
A review of PET attenuation correction methods for PET-MR
2023-Sep-11, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-023-00569-0
PMID:37695384
|
综述 | 本文综述了PET-MR系统中PET衰减校正方法的最新进展 | 本文将PET衰减校正方法分为四类:基于MR的、基于发射的、基于图谱的和基于机器学习的,并详细讨论了每种方法的优缺点 | 本文未提供具体的实验数据或结果,而是侧重于方法的分类和讨论 | 探讨PET-MR系统中PET衰减校正方法的现状和未来发展方向 | PET-MR系统中的PET衰减校正方法 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | NA |
76 | 2024-10-12 |
Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype
2023 Sep-Oct, IEEE/ACM transactions on computational biology and bioinformatics
DOI:10.1109/TCBB.2023.3290394
PMID:37379184
|
研究论文 | 研究利用深度图学习预测乳腺癌分子亚型 | 提出了一种基于多关系有向图的深度学习方法,结合多种诊断学科的患者信息,以更好地表示乳腺癌患者数据并预测分子亚型 | 未提及具体局限性 | 研究如何利用深度图学习方法提高乳腺癌分子亚型的预测准确性 | 乳腺癌患者及其分子亚型 | 机器学习 | 乳腺癌 | 深度图学习 | 关系图卷积网络 | 图像和基因数据 | 未提及具体样本数量 |
77 | 2024-10-11 |
An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies
2023-Sep-14, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.11.557288
PMID:37745338
|
研究论文 | 本研究通过挖掘研究出版物和专利,整理了超过5000个流感血凝素(HA)抗体的数据集,并开发了一种轻量级的记忆B细胞语言模型(mBLM)用于基于序列的抗体特异性预测 | 本研究创新性地开发了一种轻量级的记忆B细胞语言模型(mBLM),并成功应用于流感血凝素抗体的特异性预测 | 本研究的主要局限在于数据集的获取和模型的解释性分析 | 本研究的目的是开发一种可解释的语言模型,用于预测抗体的特异性 | 本研究主要研究对象是流感血凝素(HA)抗体 | 机器学习 | NA | NA | 记忆B细胞语言模型(mBLM) | 序列 | 超过5000个流感血凝素(HA)抗体 |
78 | 2024-10-08 |
Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction
2023-Sep-08, Patterns (New York, N.Y.)
DOI:10.1016/j.patter.2023.100825
PMID:37720330
|
研究论文 | 本文提出了一种基于深度学习的3D多模态融合框架,用于临床适用的牙骨重建 | 引入了Deep Dental Multimodal Fusion (DDMF)框架,结合了CBCT和IOS数据,采用新颖的像素表示学习架构、先验知识引导的损失函数和基于几何的3D融合技术 | NA | 开发一种自动化的多模态框架,用于高保真度的牙骨结构3D重建,以支持虚拟牙科治疗规划 | 牙骨结构的3D模型 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 大规模真实世界数据集 |
79 | 2024-10-08 |
Task-based assessment of digital mammography microcalcification detection with deep learning denoising algorithmss using in silico and physical phantom studies
2023-Sep, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.10.5.053502
PMID:37808969
|
研究论文 | 研究使用深度学习去噪算法在数字乳腺摄影微钙化检测中的任务评估,通过体内和物理模型研究 | 提出使用深度学习去噪算法来改善低剂量乳腺摄影图像质量,并探讨了训练数据集中信号存在区域的重要性 | 研究结果显示在物理模型和临床系统中,去噪后的半剂量乳腺摄影图像在微钙化信号检测方面没有明显改善 | 评估深度学习去噪算法在低剂量乳腺摄影图像中检测微钙化的效果 | 乳腺微钙化检测 | 计算机视觉 | 乳腺癌 | 深度学习去噪算法 | 卷积神经网络 | 图像 | 使用了一个人体模型物理幻影和数字压缩乳腺幻影进行研究 |
80 | 2024-10-02 |
Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning
2023-Sep-30, Molecules (Basel, Switzerland)
DOI:10.3390/molecules28196886
PMID:37836728
|
综述 | 本文综述了红外光谱分析的步骤,包括预处理、经典数据建模和深度学习 | 本文探讨了经典机器学习和深度学习在红外光谱分析中的最新进展 | NA | 探讨红外光谱分析中的预处理和数据建模方法 | 红外光谱数据及其在生物医学样本中的应用 | 机器学习 | NA | 红外光谱 | 经典机器学习模型和深度学习模型 | 光谱数据 | NA |