本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2024-09-17 |
Deep Learning Assessment of Progression of Emphysema and Fibrotic Interstitial Lung Abnormality
2023-09-15, American journal of respiratory and critical care medicine
IF:19.3Q1
DOI:10.1164/rccm.202211-2098OC
PMID:37364281
|
研究论文 | 研究使用深度学习算法评估吸烟者中肺气肿和纤维化间质性肺异常的进展及其对死亡率的影响 | 首次评估了吸烟者中肺气肿和纤维化间质性肺异常的联合进展及其对死亡率的影响 | 研究仅基于COPDGene研究中的4450名吸烟者的数据,样本量有限 | 定义吸烟者中纤维化间质性肺异常的临床意义进展,并评估纤维化和肺气肿进展对死亡率的影响 | 吸烟者中的肺气肿和纤维化间质性肺异常 | 计算机视觉 | 肺部疾病 | 深度学习算法 | NA | CT扫描图像 | 4450名吸烟者 |
102 | 2024-09-15 |
Leveraging global binary masks for structure segmentation in medical images
2023-09-13, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acf2e2
PMID:37607564
|
研究论文 | 本文提出了一种利用全局二值掩码进行医学图像结构分割的框架 | 通过利用器官解剖位置和形状信息的一致性,提出了一种基于全局二值掩码的器官分割方法,有效缓解了训练数据稀缺和图像强度变化对模型性能的影响 | 仅在脑部和心脏CT图像数据集上进行了验证,尚未在其他类型的医学图像上进行测试 | 探索利用全局二值掩码进行医学图像结构分割的有效性 | 脑部和心脏的CT图像 | 计算机视觉 | NA | 深度学习 | U-Net | 图像 | 脑部CT图像数据集26个训练样本,10个验证样本,10个测试样本;心脏CT图像数据集12个训练样本,3个验证样本,5个测试样本 |
103 | 2024-09-13 |
Proteogenomic insights suggest druggable pathways in endometrial carcinoma
2023-09-11, Cancer cell
IF:48.8Q1
DOI:10.1016/j.ccell.2023.07.007
PMID:37567170
|
研究论文 | 研究通过多组学平台分析了138个子宫内膜癌肿瘤和20个正常组织样本,揭示了潜在的可药物化通路和分子影像标志物 | 研究首次通过多组学平台全面分析子宫内膜癌,发现了新的生物标志物和潜在的治疗靶点 | 研究样本量有限,需要进一步验证结果在更大规模研究中的适用性 | 揭示子宫内膜癌中的可药物化通路和分子影像标志物,以指导患者分层和精准治疗 | 子宫内膜癌肿瘤和正常组织样本 | 数字病理学 | 子宫内膜癌 | 多组学平台 | 深度学习 | 图像 | 138个肿瘤样本和20个正常组织样本 |
104 | 2024-09-11 |
Automatic Ploidy Prediction and Quality Assessment of Human Blastocyst Using Time-Lapse Imaging
2023-Sep-02, bioRxiv : the preprint server for biology
DOI:10.1101/2023.08.31.555741
PMID:37693566
|
研究论文 | 本文介绍了一种基于时间推移成像的胚胎倍性预测和质量评估模型BELA | BELA模型通过多任务学习预测质量评分,并在Weill Cornell数据集上实现了0.76的AUC,超越了以往基于图像和视频的模型 | BELA模型不能替代植入前遗传学检测(PGT-A) | 开发和比较不同胚胎发育阶段的倍性状态预测模型,以提高胚胎质量评估和染色体异常检测的准确性 | 人类胚胎的倍性状态和质量评估 | 机器学习 | NA | 时间推移成像 | 多任务学习模型 | 视频 | Weill Cornell数据集 |
105 | 2024-08-31 |
Antigen-specific CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans
2023-Sep-15, Research square
DOI:10.21203/rs.3.rs-3304466/v1
PMID:37790414
|
研究论文 | 研究评估了BNT162b2 mRNA疫苗接种后,人类血液和引流淋巴结中针对SARS-CoV-2刺突蛋白的CD4 T细胞的单细胞转录组特征 | 使用新的深度学习方法Trex进行反向表位映射,结合单细胞TCR测序和转录组学来预测抗原特异性 | NA | 探讨SARS-CoV-2感染和mRNA疫苗接种后CD4 T细胞的转录组特征 | 人类血液和引流淋巴结中的刺突特异性CD4 T细胞 | 免疫学 | NA | 单细胞转录组学 | 深度学习 | 转录组数据 | 多个刺突特异性CD4 T细胞克隆型 |
106 | 2024-08-31 |
Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09568-2
PMID:37067576
|
研究论文 | 本研究开发了基于CT图像的深度学习辅助诊断模型,以帮助放射科医生区分良性和恶性腮腺肿瘤 | 开发的深度学习模型在预测良性和恶性腮腺肿瘤方面优于传统的支持向量机模型 | NA | 开发深度学习辅助诊断模型,以提高放射科医生对腮腺肿瘤的诊断性能 | 良性和恶性腮腺肿瘤的诊断 | 机器学习 | 腮腺肿瘤 | 深度学习 | CNN | 图像 | 573名经组织病理学确认的腮腺肿瘤患者 |
107 | 2024-08-30 |
Parking Lot Occupancy Detection with Improved MobileNetV3
2023-Sep-03, Sensors (Basel, Switzerland)
DOI:10.3390/s23177642
PMID:37688098
|
研究论文 | 本研究通过优化MobileNetV3模型并结合自定义架构改进,实现了停车场车位占用状态的精确检测 | 引入了卷积块注意力机制和蓝图可分离卷积,相较于传统深度可分离卷积,提升了模型性能 | NA | 提高停车场管理系统中车位占用检测的准确性 | 停车场车位占用状态 | 计算机视觉 | NA | 深度学习 | MobileNetV3 | 视频 | 使用CNRPark-EXT和PKLot数据集进行训练和测试 |
108 | 2024-08-30 |
Deep learning of image-derived measures of body composition in pediatric, adolescent, and young adult lymphoma: association with late treatment effects
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09587-z
PMID:36988714
|
研究论文 | 本研究使用深度学习方法分析儿童、青少年和年轻成年淋巴瘤患者的标准护理CT图像中的身体成分测量,以评估其对治疗晚期效应的预测价值。 | 本研究首次将深度学习技术应用于半自动分析淋巴瘤患者的身体成分,并评估其与治疗晚期效应的关系。 | 研究为回顾性、单中心研究,样本量相对较小,可能影响结果的普遍性。 | 研究目的是将深度学习方法应用于半自动分析淋巴瘤患者的身体成分,并评估其对治疗晚期效应的预测价值。 | 研究对象为110名儿童、青少年和年轻成年淋巴瘤患者。 | 计算机视觉 | 淋巴瘤 | 深度学习 | 深度学习模型 | 图像 | 110名患者,260个CT图像数据集 |
109 | 2024-08-30 |
The effect of hepatic steatosis on liver volume determined by proton density fat fraction and deep learning-measured liver volume
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09603-2
PMID:37012546
|
研究论文 | 本研究评估了肝脂肪变性(HS)对肝脏体积的影响,并开发了一种公式来估计校正HS影响的瘦肝体积 | 提出了一个公式来估计校正肝脂肪变性影响的瘦肝体积 | 这是一个回顾性研究,样本仅包括健康的成年肝脏捐赠者 | 评估肝脂肪变性对肝脏体积的影响并开发校正公式 | 肝脂肪变性对肝脏体积的影响 | NA | NA | 磁共振成像(MRI),质子密度脂肪分数(PDFF)测量 | 深度学习算法 | 图像 | 1038名捐赠者(平均年龄31±9岁,689名男性) |
110 | 2024-08-30 |
Liver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09576-2
PMID:37014405
|
研究论文 | 本文提出了一种基于深度学习的多解码器水脂分离神经网络(MDWF-Net),用于从仅含3个回波的化学位移编码MRI图像中准确估计肝脏质子密度脂肪分数(PDFF)。 | 创新点在于使用多解码器水脂分离神经网络,通过减少回波数量来缩短MR扫描时间,同时保持PDFF估计的准确性。 | NA | 研究目的是通过减少回波数量,缩短MR扫描时间,同时保持肝脏PDFF估计的准确性。 | 研究对象是肝脏PDFF的估计,使用的是化学位移编码MRI图像。 | 机器学习 | NA | MRI | CNN | 图像 | 134名受试者的MRI数据用于训练,14名受试者的数据用于评估。 |
111 | 2024-08-30 |
Dynamic evolution of brain structural patterns in liver transplantation recipients: a longitudinal study based on 3D convolutional neuronal network model
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09604-1
PMID:37014408
|
研究论文 | 本研究评估了肝移植受者在手术前后大脑结构模式的变化,使用基于深度学习的神经解剖生物标志物进行纵向测量。 | 采用3D卷积神经网络模型来预测大脑年龄,并通过网络遮挡敏感性分析确定各网络在年龄预测中的重要性。 | NA | 评估肝移植受者大脑健康的动态演变过程。 | 肝移植受者的大脑结构模式。 | 机器学习 | NA | 3D卷积神经网络 | 3D-CNN | MRI图像 | 3609名健康个体和60名肝移植受者及134名对照组 |
112 | 2024-08-30 |
Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09590-4
PMID:37052658
|
研究论文 | 本文建立了一种基于多参数深度学习模型的全自动无创脑膜瘤分级系统,并进行了分割 | 采用多参数三维U-net和ResNet构建的两阶段深度学习分级模型,结合T1C和T2图像,提高了分级和分割的准确性 | NA | 开发一种稳健的、可解释的多参数深度学习模型,用于自动无创脑膜瘤分级和分割 | 257名经病理证实的脑膜瘤患者(162例低级别,95例高级别)的脑部MRI图像 | 机器学习 | 脑膜瘤 | MRI | U-net, ResNet | 图像 | 训练集257例,验证集61例 |
113 | 2024-08-30 |
Risk estimation for idiopathic normal-pressure hydrocephalus: development and validation of a brain morphometry-based nomogram
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09612-1
PMID:37059905
|
研究论文 | 开发并验证了一种基于脑部形态测量的诺模图,用于预测特发性正常压力脑积水 | 利用深度学习技术进行脑部分割和三维体积测量,开发了一种结合高凸紧密度、胼胝体角度小于90°和标准化侧脑室体积的诺模图 | NA | 开发和验证一种基于MRI特征的诺模图,用于预测特发性正常压力脑积水 | 60岁及以上被临床诊断为特发性正常压力脑积水、帕金森病、阿尔茨海默病或健康对照的患者 | NA | 特发性正常压力脑积水 | MRI | 深度学习 | 图像 | 452名患者(平均年龄±标准差,73.2±6.5岁;200名男性) |
114 | 2024-08-30 |
Deep learning-based diagnosis of osteoblastic bone metastases and bone islands in computed tomograph images: a multicenter diagnostic study
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09573-5
PMID:37060446
|
研究论文 | 本研究开发并验证了一种基于CT图像的深度学习(DL)模型,用于区分骨岛和成骨性骨转移瘤 | 采用三切片CT图像输入的2.5D深度学习模型在分类硬化性骨病变方面优于2D模型 | NA | 开发和验证一种深度学习模型,用于区分骨岛和成骨性骨转移瘤 | 硬化性骨病变(SBLs)患者 | 计算机视觉 | 骨转移瘤 | 深度学习 | 2D和2.5D深度学习模型 | CT图像 | 共使用了1918个SBLs样本,涉及728名患者(站点1),122个SBLs样本,涉及71名患者(站点2),71个SBLs样本,涉及47名患者(站点3) |
115 | 2024-08-30 |
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09827-2
PMID:37338554
|
研究论文 | 本文使用卷积神经网络实现喉下癌(HPC)在MRI上的全自动分割和放射组学特征提取 | DeepLab V3+模型在自动分割和放射组学特征提取方面优于U-Net模型,特别是在小肿瘤体积的分割上表现更佳 | NA | 研究目的是利用深度学习技术实现喉下癌肿瘤在MRI上的自动分割和放射组学特征提取 | 研究对象为222名喉下癌患者,其中178名用于训练,44名用于测试 | 计算机视觉 | 喉下癌 | MRI | CNN | 图像 | 222名喉下癌患者 |
116 | 2024-08-27 |
Early Diagnosis: End-to-End CNN-LSTM Models for Mass Spectrometry Data Classification
2023-09-12, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.3c00613
PMID:37624777
|
研究论文 | 本文提出了一种结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的端到端深度学习方法,用于质谱数据分类,以实现早期癌症诊断 | 该方法能够直接处理原始质谱数据,避免了复杂的前处理和特征选择步骤,同时能够有效降低数据的高维度并捕捉时间模式 | NA | 提高诊断过程中早期癌症检测的准确性 | 肿瘤组织和正常组织的早期鉴别 | 机器学习 | NA | LC-MS | CNN-LSTM | 质谱数据 | NA |
117 | 2024-08-24 |
Novel tools for early diagnosis and precision treatment based on artificial intelligence
2023-Sep, Chinese medical journal pulmonary and critical care medicine
DOI:10.1016/j.pccm.2023.05.001
PMID:39171128
|
研究论文 | 本文探讨了基于人工智能的新工具在肺癌早期诊断和精准治疗中的应用 | 文章介绍了人工智能技术在肺癌诊断和治疗中的创新应用,包括机器学习和深度学习在肺结节检测、良恶性分类和亚型识别中的应用,以及非侵入性预测遗传突变和分子状态的能力 | 文章指出,人工智能在临床广泛应用中仍面临数据共享、标准化标签获取、临床应用监管和多模态整合等挑战 | 旨在提高肺癌的早期诊断和个性化治疗方案,从而改善患者的5年生存率 | 肺癌的早期诊断和精准治疗 | 机器学习 | 肺癌 | 人工智能 | 机器学习和深度学习 | CT图像和病理图像 | NA |
118 | 2024-08-22 |
Biometric Contrastive Learning for Data-Efficient Deep Learning from Electrocardiographic Images
2023-Sep-14, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.09.13.23295494
PMID:37745527
|
研究论文 | 本文介绍了一种名为生物特征对比学习(BCL)的自监督预训练方法,用于从心电图(ECG)图像中进行数据高效的深度学习,以检测心脏疾病。 | BCL方法通过利用来自同一患者的不同ECG图像的生物特征签名,提高了AI模型在有限标记数据下检测心脏疾病的效率。 | NA | 开发一种数据高效的深度学习方法,用于从心电图图像中检测心脏疾病。 | 心电图图像,用于检测心房颤动(AF)、性别和LVEF<40%。 | 机器学习 | 心血管疾病 | 生物特征对比学习(BCL) | 卷积神经网络(CNN) | 图像 | 78,288个个体的心电图图像 |
119 | 2024-08-19 |
Three-Dimensional Structural Phenotype of the Optic Nerve Head as a Function of Glaucoma Severity
2023-09-01, JAMA ophthalmology
IF:7.8Q1
DOI:10.1001/jamaophthalmol.2023.3315
PMID:37589980
|
研究论文 | 本研究详细描述和分析了青光眼严重程度作为函数的3维结构表型,增强了对青光眼复杂病理的理解 | 使用传统和人工智能驱动的方法,描述了不同青光眼阶段视神经头(ONH)中连接组织和神经组织的3维结构差异 | 本研究为横断面研究,未来需要进行纵向研究以建立特定的3维ONH结构变化与快速视野恶化的联系 | 描述不同青光眼阶段视神经头(ONH)中连接组织和神经组织的3维结构差异 | 视神经头(ONH)的3维结构 | 数字病理学 | 青光眼 | 光谱域光学相干断层扫描 | 深度神经网络 | 图像 | 541名中国个体和112名白人参与者 |
120 | 2024-08-09 |
Automated Segmentation of Optical Coherence Tomography Images of the Human Tympanic Membrane Using Deep Learning
2023-Sep, Algorithms
IF:1.8Q2
DOI:10.3390/a16090445
PMID:39104565
|
研究论文 | 本文利用深度学习算法自动分割人耳鼓膜的光学相干断层扫描(OCT)图像 | 开发了一种基于卷积神经网络的深度学习算法,能够准确识别并分割耳鼓膜,提高图像可视化效果 | 未提及具体限制 | 改进数据分析和图像处理,使OCT医学影像成为耳鼻喉科领域便捷且可行的诊断工具 | 人耳鼓膜的OCT图像 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | 卷积神经网络(CNN) | 图像 | 3D体积的人耳鼓膜图像 |