深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202310-202310] [清除筛选条件]
当前共找到 225 篇文献,本页显示第 221 - 225 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
221 2024-08-07
Fast non-iterative algorithm for 3D point-cloud holography
2023-Oct-23, Optics express IF:3.2Q2
研究论文 本文介绍了一种用于3D点云全息图的快速非迭代算法,该算法通过快速确定性计算来高效分配空间光调制器(SLM)像素,以在多个时间帧中分布所有点的图案。 提出的非迭代点云全息算法比迭代Gerchberg-Saxton算法在计算速度上有显著优势,尤其是在高像素数的SLM上。 该算法主要针对稀疏点集合的应用,可能不适用于密集点集合或其他类型的全息图生成。 开发一种能够在移动或硬件轻量级设置中实时操作的高效3D全息图生成方法。 3D点云全息图的生成算法及其在生物显微镜和材料加工中的应用。 计算机视觉 NA 空间光调制器(SLM) 非迭代算法 3D点云 512×512像素数组 NA NA NA NA
222 2024-08-07
Foundation Ark: Accruing and Reusing Knowledge for Superior and Robust Performance
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
research paper 本文开发了一个框架,通过聚合多个小型公共数据集中的专家标注知识,训练出强大的基础模型,以提高性能和鲁棒性 提出了一个能够从多个公共数据集中积累和重用专家标注知识的框架,通过聚合多样化的数据集来提升模型性能 NA 开发一个能够通过聚合多个小型公共数据集来训练出强大且鲁棒的基础模型的框架 胸部X光片(CXRs)的分类和分割任务 machine learning NA deep learning foundation model image 335,484 和 704,363 张胸部X光片(CXRs) NA NA NA NA
223 2024-08-07
Automatic reorientation by deep learning to generate short-axis SPECT myocardial perfusion images
2023-10, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology IF:3.0Q2
研究论文 本研究开发了一种基于深度学习的方法,用于自动重新定位单光子发射计算机断层扫描(SPECT)心肌灌注图像(MPI)到标准短轴切片 本研究首次采用卷积神经网络(CNN)预测变换参数,并通过空间变换网络(STN)生成重新定位的图像 NA 开发一种基于深度学习的方法,用于自动重新定位SPECT心肌灌注图像到标准短轴切片 SPECT心肌灌注图像的自动重新定位 计算机视觉 心血管疾病 深度学习 CNN 图像 共254名患者,包括226个应激SPECT MPI和247个休息SPECT MPI NA NA NA NA
224 2024-08-07
Motion Compensated Unsupervised Deep Learning for 5D MRI
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
研究论文 提出一种无监督深度学习算法,用于从3D径向采集数据中进行5D心脏MRI数据的动补偿重建 该算法是一种更数据高效的选择,用于当前的动解析重建方法 NA 简化扫描规划,提高患者舒适度,并提供比呼吸保持2D检查更多的临床优势 5D心脏MRI数据的动补偿重建 计算机视觉 NA MRI 卷积神经网络 图像 两个受试者的5D bSSFP数据集 NA NA NA NA
225 2024-08-07
Machine learning-based speech recognition system for nursing documentation - A pilot study
2023-10, International journal of medical informatics IF:3.7Q2
研究论文 本研究旨在评估基于机器学习的语音识别系统在精神科病房中减少护理记录打字工作量的有效性 本研究开发了一种基于机器学习的语音识别系统,用于提高护理文档记录的效率 语音识别转录的潜在错误需要持续识别和改进,且需要进一步研究以提高不同临床专科中护理记录数字化文档的效率和准确性 评估基于机器学习的语音识别系统在减少护理记录打字工作量方面的有效性 精神科病房的护理记录工作 机器学习 NA 机器学习 语音识别系统 文本 21名护士参与评估,共收集200条数据 NA NA NA NA
回到顶部