本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 81 | 2024-11-08 |
Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43996-4_24
PMID:38515783
|
研究论文 | 本文提出了一种使用弱监督多任务深度学习在术中CT图像中检测耳蜗植入电极折叠的方法 | 本文创新性地使用合成数据集训练了一个多任务3D-UNet模型,用于检测耳蜗植入电极的折叠情况 | 本文仅在合成数据集和少量真实数据上进行了验证,未来需要在更大规模的真实数据上进行进一步验证 | 开发一种自动检测耳蜗植入电极折叠的方法,以减少手术风险和提高听力恢复效果 | 耳蜗植入电极的折叠情况 | 计算机视觉 | NA | 弱监督学习 | 3D-UNet | CT图像 | 训练数据包括合成数据集,测试数据包括7个折叠电极和200个非折叠电极的真实术后CT图像 | NA | NA | NA | NA |
| 82 | 2024-11-08 |
Can point cloud networks learn statistical shape models of anatomies?
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43907-0_47
PMID:39498296
|
研究论文 | 本文探讨了点云网络在统计形状建模(SSM)中的应用 | 首次探索了点云深度学习在SSM中的应用,展示了现有点云编码器-解码器网络在捕捉形状统计表示方面的潜力 | 讨论了现有技术在SSM应用中的局限性,并提出了未来改进的方向 | 研究点云网络在统计形状建模中的潜力 | 点云深度学习在SSM中的应用 | 计算机视觉 | NA | 点云深度学习 | 点云编码器-解码器网络 | 点云 | NA | NA | NA | NA | NA |
| 83 | 2024-11-02 |
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images
2023-Oct, Shape in medical imaging : International Workshop, ShapeMI 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ShapeMI (Workshop) (2023 : Vancouver, B.C.)
DOI:10.1007/978-3-031-46914-5_8
PMID:39022299
|
研究论文 | 本文提出了一种新的对抗性数据增强策略,用于图像到统计形状模型(Image-to-SSM)框架,通过数据依赖的噪声生成或纹理增强来提高模型的准确性 | 本文的创新点在于提出了一种实时数据增强策略,通过对抗性训练生成多样化和具有挑战性的噪声样本,从而鼓励模型关注底层几何结构而非仅依赖像素值 | 本文未提及具体的局限性 | 研究目的是提高图像到统计形状模型网络的准确性,减少模型对图像纹理的依赖 | 研究对象是医学影像中的统计形状模型及其在深度学习模型中的应用 | 计算机视觉 | NA | 深度学习 | 对抗网络 | 图像 | NA | NA | NA | NA | NA |
| 84 | 2024-11-02 |
Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models
2023-Oct, Shape in medical imaging : International Workshop, ShapeMI 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ShapeMI (Workshop) (2023 : Vancouver, B.C.)
DOI:10.1007/978-3-031-46914-5_13
PMID:38745942
|
研究论文 | 提出了一种新的训练策略,渐进式DeepSSM,用于训练图像到形状的深度学习模型,通过多尺度学习逐步提升模型性能 | 引入了一种新的训练策略,渐进式DeepSSM,通过多尺度学习逐步提升模型性能,并结合形状先验和深度监督损失 | NA | 改进图像到形状深度学习模型的训练方法,提高其在医学图像中的稳定性和准确性 | 图像到形状的深度学习模型 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | NA | NA | NA | NA | NA |
| 85 | 2024-10-30 |
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ Segmentation
2023-Oct, Uncertainty for safe utilization of machine learning in medical imaging : 5th international workshop, UNSURE 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, proceedings. UNSURE (Workshop) (5th : 2023...
DOI:10.1007/978-3-031-44336-7_6
PMID:39469570
|
研究论文 | 本文对在器官分割中可扩展的认知不确定性量化方法进行了全面的基准测试 | 本文首次在医学图像分析背景下对多种认知不确定性量化方法进行了全面评估,并提供了未来改进的建议 | 本文未提及具体的局限性 | 评估和理解模型预测中的不确定性在临床应用中的重要性 | 器官分割中的认知不确定性量化方法 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA | NA | NA | NA | NA |
| 86 | 2024-10-21 |
Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies
2023-10-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-44802-3
PMID:37845272
|
研究论文 | 本文开发了一种基于深度学习的模型,用于自动测量吞咽研究中的各种时间参数 | 本文提出了基于ResNet3D的模型,相比之前的VGG和I3D模型,在准确性、F1分数和平均精度方面取得了最佳结果 | NA | 开发一种自动测量吞咽研究中时间参数的模型,以提高分析的准确性和效率 | 吞咽研究中的时间参数,包括口腔期持续时间、咽部延迟时间等七个参数 | 计算机视觉 | NA | 深度学习 | ResNet3D | 视频 | 547个VFSS视频片段 | NA | NA | NA | NA |
| 87 | 2024-10-20 |
Cross-Attention for Improved Motion Correction in Brain PET
2023-Oct, Machine learning in clinical neuroimaging : 6th international workshop, MLCN 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, proceedings. MLCN (Workshop) (6th : 2023 : Vancouver, B.C.)
DOI:10.1007/978-3-031-44858-4_4
PMID:38174216
|
研究论文 | 本文提出了一种基于交叉注意力机制的深度学习网络,用于改善脑部PET图像重建中的运动校正 | 引入了交叉注意力机制,增强了模型对不同测试对象的鲁棒性,并显著提高了运动校正的性能 | NA | 提高脑部PET图像重建的质量,减少运动伪影对临床诊断和治疗的影响 | 脑部PET图像的运动校正 | 计算机视觉 | NA | 深度学习 | 交叉注意力机制 | 图像 | 使用了来自两个不同扫描仪(HRRT和mCT)的脑部PET数据进行验证 | NA | NA | NA | NA |
| 88 | 2024-10-18 |
High-Speed On-Site Deep Learning-Based FFR-CT Algorithm: Evaluation Using Invasive Angiography as the Reference Standard
2023-10, AJR. American journal of roentgenology
DOI:10.2214/AJR.23.29156
PMID:37132550
|
研究论文 | 本研究评估了一种基于深度学习的高速现场FFR-CT算法在诊断冠状动脉狭窄中的表现 | 开发了一种基于深度学习的高速现场FFR-CT算法,显著缩短了分析时间,并提高了诊断准确性 | 研究为回顾性,样本量相对较小,且仅限于特定时间段内的患者 | 评估基于深度学习的FFR-CT算法在诊断冠状动脉狭窄中的诊断性能 | 冠状动脉狭窄的诊断和评估 | 计算机视觉 | 心血管疾病 | 深度学习 | 3D计算流体动力学模型 | 图像 | 59名患者(46名男性,13名女性;平均年龄66.5 ± 10.2岁) | NA | NA | NA | NA |
| 89 | 2024-10-18 |
Editorial Comment: On-Site Deep Learning-Based FFR-CT-A Novel Method to Evaluate Functionally Significant Stenosis
2023-Oct, AJR. American journal of roentgenology
DOI:10.2214/AJR.23.29561
PMID:37132555
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 90 | 2024-10-17 |
Hybrid AI models allow label-free identification and classification of pancreatic tumor repopulating cell population
2023-10-15, Biochemical and biophysical research communications
IF:2.5Q3
DOI:10.1016/j.bbrc.2023.08.015
PMID:37573767
|
研究论文 | 本文开发了一种混合AI模型,用于无标签识别和分类胰腺肿瘤再生细胞(TRCs)群体 | 本文创新性地将深度学习(DL)模型与机器学习(ML)模型结合,实现了对3D纤维蛋白凝胶选择TRCs的高效分类 | NA | 开发一种能够快速、高通量识别和分类胰腺肿瘤再生细胞的方法 | 胰腺肿瘤再生细胞(TRCs)及其亚型 | 机器学习 | 胰腺癌 | 深度学习(DL)、机器学习(ML) | Inception-v3卷积神经网络(CNN)、支持向量机(SVM) | 细胞 | 使用了四种人类胰腺癌细胞系:MIA PaCa-2、PANC-1、CFPAC-1和HPAF-II | NA | NA | NA | NA |
| 91 | 2024-10-14 |
Updates in Diagnostic Imaging for Infectious Keratitis: A Review
2023-Oct-31, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics13213358
PMID:37958254
|
综述 | 本文综述了感染性角膜炎诊断成像技术的最新进展 | 介绍了深度学习模型在感染性角膜炎诊断中的应用潜力,并探讨了生成对抗网络等新技术在克服现有模型局限性方面的可能性 | 深度学习模型需要大量图像数据进行训练,且在识别不同类型感染性角膜炎的特殊特征、模型训练不平衡、缺乏图像协议和分类偏差等方面存在挑战 | 探讨感染性角膜炎诊断成像技术的最新进展及其在临床应用中的潜力 | 感染性角膜炎的诊断成像技术,包括裂隙灯显微镜、光学相干断层扫描、体内共聚焦显微镜和深度学习模型 | 计算机视觉 | 眼科疾病 | 光学相干断层扫描(OCT)、体内共聚焦显微镜(IVCM)、深度学习(DL) | 卷积神经网络(CNN)、生成对抗网络(GAN) | 图像 | NA | NA | NA | NA | NA |
| 92 | 2024-10-14 |
Impact of Imaging Biomarkers and AI on Breast Cancer Management: A Brief Review
2023-Oct-30, Cancers
IF:4.5Q1
DOI:10.3390/cancers15215216
PMID:37958390
|
综述 | 本文回顾了BI-RADS的历史,探讨了先进的乳腺成像技术,并介绍了人工智能在乳腺癌管理中的应用 | 本文整合了最新的成像技术和人工智能算法,旨在提高放射科医生对乳腺癌患者的个性化需求的服务能力 | NA | 探讨成像生物标志物和人工智能在乳腺癌管理中的应用 | 乳腺成像技术、成像生物标志物、治疗反应评估以及人工智能在乳腺癌诊断中的应用 | 计算机视觉 | 乳腺癌 | NA | NA | 图像 | NA | NA | NA | NA | NA |
| 93 | 2024-10-14 |
Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging
2023-Oct-27, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics13213326
PMID:37958222
|
研究论文 | 本研究探讨了使用合成幻影数据在医学影像中应用深度学习进行CEST MRI数据去噪的可行性 | 本研究首次使用合成幻影数据和神经网络(特别是ResUNet架构)进行CEST MRI数据去噪,并展示了其在高噪声环境下的优越性能 | 神经网络在体内数据应用中面临噪声特征变化的挑战,需要进一步研究其在临床环境中的应用 | 研究深度学习在CEST MRI数据去噪中的应用,并评估其在不同噪声水平下的性能 | 合成生成的CEST MRI图像和传统去噪方法的比较 | 计算机视觉 | NA | 深度学习 | ResUNet | 图像 | 使用合成生成的幻影数据进行实验 | NA | NA | NA | NA |
| 94 | 2024-10-14 |
Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic Industries
2023-Oct-27, Sensors (Basel, Switzerland)
DOI:10.3390/s23218780
PMID:37960480
|
综述 | 本文综述了主动红外热成像技术在可再生能源和电子行业中的缺陷检测应用 | 结合红外热成像与深度学习技术,提出了一种高效且高精度的光伏板缺陷检测解决方案 | 讨论了红外热成像技术在激励源、光伏行业、电子行业和人工智能方面的优势与挑战 | 综述红外热成像技术在可再生能源和电子行业中的应用,并探讨其未来研究方向 | 红外热成像技术在光伏板和电路板缺陷检测中的应用 | 计算机视觉 | NA | 红外热成像 | 深度学习 | 图像 | NA | NA | NA | NA | NA |
| 95 | 2024-10-14 |
DeepVision: Enhanced Drone Detection and Recognition in Visible Imagery through Deep Learning Networks
2023-Oct-25, Sensors (Basel, Switzerland)
DOI:10.3390/s23218711
PMID:37960411
|
研究论文 | 本文介绍了一种创新的深度学习方法,用于在可见图像中有效区分无人机和鸟类 | 提出了一种基于SqueezeNet模型的深度学习方法,通过图像分块技术提高了对小型无人机的检测性能,并在平均精度(AP)和检测时间上优于其他现有方法 | NA | 解决无人机在机场等关键基础设施中的潜在滥用问题,提高无人机检测的准确性和实时性 | 无人机和鸟类 | 计算机视觉 | NA | 深度学习 | SqueezeNet | 图像 | 使用了由多所大学和研究机构提供的真实世界数据集,作为2020年无人机与鸟类检测挑战的一部分 | NA | NA | NA | NA |
| 96 | 2024-10-14 |
Protein Language Models Uncover Carbohydrate-Active Enzyme Function in Metagenomics
2023-Oct-25, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.23.563620
PMID:37961379
|
研究论文 | 本文介绍了CAZyLingua工具,该工具利用蛋白质语言模型嵌入构建深度学习框架,用于元基因组数据中碳水化合物活性酶(CAZymes)的功能注释 | 首次利用蛋白质语言模型嵌入构建深度学习框架进行CAZymes的功能注释,并在多个数据集上展示了比传统序列同源性方法更高的F1分数 | NA | 开发一种新的工具来提高元基因组数据中碳水化合物活性酶的功能注释准确性 | 碳水化合物活性酶(CAZymes)及其在元基因组数据中的功能注释 | 机器学习 | NA | 蛋白质语言模型嵌入 | 深度学习模型 | 元基因组数据 | 包括母亲/婴儿纵向数据集和纤维化倾向疾病(如克罗恩病和IgG4相关疾病)患者的元基因组数据集 | NA | NA | NA | NA |
| 97 | 2024-10-14 |
Exploring the Roles of RNAs in Chromatin Architecture Using Deep Learning
2023-Oct-24, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.22.563498
PMID:37961712
|
研究论文 | 本文提出了一种名为AkitaR的深度学习框架,利用基因组序列和全基因组RNA-DNA相互作用来研究染色质相关RNAs(caRNAs)在HFFc6细胞中基因组折叠中的作用 | 本文首次提出了AkitaR框架,通过结合基因组序列和RNA-DNA相互作用来解析caRNAs在基因组折叠中的作用,并发现了新的可能调节染色质结构的非编码RNAs | 本文主要集中在HFFc6细胞中,研究结果的普适性有待进一步验证 | 研究染色质相关RNAs在基因组三维组织中的作用 | 染色质相关RNAs(caRNAs)及其在基因组折叠中的作用 | 机器学习 | NA | 深度学习 | 深度学习框架 | 基因组序列和RNA-DNA相互作用数据 | HFFc6细胞 | NA | NA | NA | NA |
| 98 | 2024-10-14 |
Binding affinity predictions with hybrid quantum-classical convolutional neural networks
2023-Oct-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-45269-y
PMID:37864075
|
研究论文 | 本文介绍了一种混合量子-经典卷积神经网络用于预测药物与蛋白质的结合亲和力 | 提出了一种混合量子-经典卷积神经网络,相比传统方法减少了20%的复杂性,并在训练阶段节省了40%的成本和时间 | NA | 提高药物设计的效率和准确性 | 药物与蛋白质的结合亲和力 | 机器学习 | NA | 量子机器学习 | 卷积神经网络 | 结合亲和力数据 | NA | NA | NA | NA | NA |
| 99 | 2024-10-14 |
Leveraging Large Language Models (LLM) for the Plastic Surgery Resident Training: Do They Have a Role?
2023-Oct, Indian journal of plastic surgery : official publication of the Association of Plastic Surgeons of India
IF:0.7Q4
DOI:10.1055/s-0043-1772704
PMID:38026769
|
研究论文 | 探讨大型语言模型(LLM)在整形外科住院医师培训中的作用 | 研究首次探索了LLM作为教学助理(TA)在整形外科中的应用,并评估了其生成内容的准确性和实用性 | 研究仅基于ChatGPT模型,未涵盖其他LLM模型,且样本量较小,仅涉及八位研究作者的评估 | 评估LLM在整形外科住院医师培训中的潜在作用 | 整形外科住院医师培训中的教学助理角色 | 自然语言处理 | NA | 深度学习技术,包括微调和基于人类反馈的强化学习 | Transformer | 文本 | 八位研究作者 | NA | NA | NA | NA |
| 100 | 2024-10-13 |
Radiation pneumonia predictive model for radiotherapy in esophageal carcinoma patients
2023-Oct-17, BMC cancer
IF:3.4Q2
DOI:10.1186/s12885-023-11499-6
PMID:37848844
|
研究论文 | 本研究探讨了三维剂量分布和临床特征在预测食管癌患者放疗后放射性肺炎中的作用,并设计了一种新的混合深度学习网络来预测放射性肺炎的发生 | 本研究首次将临床特征整合到深度学习模型中,设计了一种新的混合深度学习网络HybridNet,结合了3D ResNet18和1D卷积层,显著提高了预测精度 | NA | 探索三维剂量分布和临床特征在预测食管癌患者放疗后放射性肺炎中的作用,并设计新的混合深度学习网络来提高预测精度 | 食管癌患者放疗后的放射性肺炎 | 机器学习 | 食管癌 | 深度学习 | HybridNet(结合3D ResNet18和1D卷积层) | 三维剂量分布矩阵和一维临床特征矩阵 | 105名接受过放疗的食管癌患者 | NA | NA | NA | NA |