深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202310-202310] [清除筛选条件]
当前共找到 192 篇文献,本页显示第 141 - 160 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
141 2024-09-28
End-to-end deep learning radiomics: development and validation of a novel attention-based aggregate convolutional neural network to distinguish breast diffuse large B-cell lymphoma from breast invasive ductal carcinoma
2023-Oct-01, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 开发并验证了一种基于注意力机制的聚合卷积神经网络模型,用于区分乳腺弥漫大B细胞淋巴瘤和乳腺浸润性导管癌 提出了一种新的基于注意力机制的聚合卷积神经网络模型,用于非侵入性地区分乳腺弥漫大B细胞淋巴瘤和乳腺浸润性导管癌 研究仅限于使用18F-FDG PET/CT图像,且样本量相对较小 开发和验证一种有效的深度学习放射组学模型,以区分乳腺弥漫大B细胞淋巴瘤和乳腺浸润性导管癌 乳腺弥漫大B细胞淋巴瘤和乳腺浸润性导管癌 计算机视觉 乳腺肿瘤 18F-FDG PET/CT 注意力机制的聚合卷积神经网络 图像 324个乳腺结节,来自236名患者
142 2024-09-28
End-to-end deep learning classification of vocal pathology using stacked vowels
2023-Oct, Laryngoscope investigative otolaryngology IF:1.6Q2
研究论文 本文研究了使用多个元音录音同时分析来提高语音病理分类的可行性和潜力 本文提出了一种新的堆叠元音模型,通过同时分析三个元音(/a/,/i/,/u/)来提高语音病理的分类性能 本文仅使用了Saarbruecken语音数据库中的数据,样本量有限,可能影响模型的泛化能力 研究如何通过分析多个元音录音来提高语音病理的分类准确性 健康人群和发声障碍患者的语音样本 机器学习 发声障碍 一维卷积神经网络 卷积神经网络 语音 687名健康参与者和334名发声障碍患者
143 2024-09-27
When will RNA get its AlphaFold moment?
2023-Oct-13, Nucleic acids research IF:16.6Q1
研究论文 本文讨论了在短期内开发基于深度学习的RNA结构预测方法(如AlphaFold)所面临的挑战,并提出了改进建议 本文首次详细讨论了RNA结构预测中数据质量和数量问题,并提出了可能的解决方案 本文主要集中在讨论现有数据和方法的局限性,未提供具体的解决方案或实验验证 探讨RNA结构预测中深度学习方法的挑战并提出改进建议 RNA的3D结构预测 机器学习 NA 深度学习 AlphaFold 序列数据 有限数量的结构和比对数据
144 2024-09-27
3D Ultrasonic Brain Imaging with Deep Learning Based on Fully Convolutional Networks
2023-Oct-09, Sensors (Basel, Switzerland)
研究论文 本文介绍了一种基于全卷积网络的3D超声脑成像深度学习算法 提出了Brain Imaging Full Convolution Network (BIFCN)算法,结合波形建模和深度学习进行精确的脑超声重建 实验结果在实验室中略低于模拟实验,且需要纯水作为初始模型 开发一种安全、快速且广泛适用的脑成像技术 成人颅内脑组织的3D超声成像 计算机视觉 NA 超声成像 全卷积网络 (FCN) 图像 10个样本
145 2024-09-27
Go with the flow: deep learning methods for autonomous viscosity estimations
2023-Oct-09, Digital discovery IF:6.2Q1
研究论文 本文提出了一种使用卷积神经网络(CNN)进行自主粘度估计的方法,通过非侵入性地提取流体流动的时空特征来替代传统的粘度测量方法 本文的创新点在于使用3D卷积神经网络(3D-CNN)进行粘度估计,并通过实验证明其性能优于人类观察者 本文的局限性在于仅在实验室条件下进行了验证,尚未在实际工业应用中进行测试 本文的研究目的是开发一种快速、非侵入性的粘度测量方法,以加速材料发现和过程控制 本文的研究对象是流体的粘度及其在流体流动中的时空特征 机器学习 NA 卷积神经网络(CNN) 3D卷积神经网络(3D-CNN) 视频 本文使用了少于50个视频样本进行训练,每个液体类别约50个视频
146 2024-09-27
disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data
2023-Oct-05, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为disperseNN2的深度学习工具,用于从地理参考的多态性数据中估计每代平均扩散距离 disperseNN2通过使用样本的地理信息,在特征提取方面优于不使用显式空间信息的先进深度学习方法,平均相对绝对误差分别降低了33%和48% NA 开发一种能够从地理参考的多态性数据中估计生物扩散距离的深度学习工具 生物的扩散距离 机器学习 NA 深度学习 神经网络 多态性数据 10和100个个体
147 2024-09-27
Preparing Data for Artificial Intelligence in Pathology with Clinical-Grade Performance
2023-Oct-03, Diagnostics (Basel, Switzerland)
综述 本文回顾了2017年至2022年间在PubMed数据库中发表的与人工智能病理学(AIP)相关的研究,深入分析了数据准备方法,并探讨了提高AIP临床性能的有效策略 提出了基于全片图像(WSI)的弱监督学习方法和数据标准化技术,以克服AIP性能复现的障碍 未提及具体的研究局限性 探讨如何通过数据准备方法提高人工智能病理学在临床实践中的性能 病理组织切片的数据获取、清洗、筛选和数字化,以及模型训练和验证的数据集划分 数字病理学 NA 弱监督学习方法,数据标准化 NA 图像 118项研究
148 2024-09-27
Development and Validation of a Model to Quantify Injury Severity in Real Time
2023-10-02, JAMA network open IF:10.5Q1
研究论文 开发并验证了一种实时量化损伤严重程度的模型 提出了一个实用的模型,通过有限数量的损伤模式实时量化损伤严重程度,并使用三个直观的输出结果 模型在预测住院死亡率时存在高估的情况,需要进一步研究以在大规模应用中评估其性能 开发和验证一个实用的模型,用于实时量化损伤严重程度 成人创伤性损伤患者 NA NA 多任务深度学习 多任务深度学习模型 数据集 372,573例创伤性损伤患者
149 2024-09-27
MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data
2023-10, Medical image analysis IF:10.7Q1
研究论文 提出了一种名为MISPEL的监督式深度学习方法,用于多扫描器神经影像数据的标准化 MISPEL方法可以自然扩展到两个以上的扫描器,并且设计了一套标准来评估扫描器相关的技术变异性和标准化技术 NA 解决多扫描器神经影像数据中的技术变异性问题,提高数据分析的准确性和可靠性 多扫描器神经影像数据的标准化方法 计算机视觉 NA 深度学习 NA 图像 涉及四个扫描器的3T T1图像数据集
150 2024-09-27
Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models
2023-Oct, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文提出了一种基于深度学习的BERT变换器语言模型BERTOS,用于预测无机化合物中所有元素的氧化态 首次实现了基于化学组成的氧化态预测,并展示了其在材料发现中的应用潜力 NA 开发一种新的方法来预测无机化合物中所有元素的氧化态 无机化合物的氧化态 机器学习 NA 深度学习 BERT变换器 化学组成数据 基于ICSD数据集的清洁数据进行基准测试
151 2024-09-27
Considerations on brain age predictions from repeatedly sampled data across time
2023-Oct, Brain and behavior IF:2.6Q3
研究论文 本文研究了从多次采样的时间数据中预测大脑年龄的表现,并通过年龄匹配的健康对照组验证了研究结果 本文首次探讨了大脑年龄预测在同一受试者不同时间点的表现,并验证了场强对大脑年龄的影响 本文样本量较小,且未完全排除数据采集过程中变异导致的偏差 研究大脑年龄预测在纵向数据中的表现及其影响因素 大脑年龄预测模型在同一受试者不同时间点的表现 计算机视觉 NA 磁共振成像 (MRI) 深度学习模型 图像 4名受试者(来自两个密集采样数据集),以及两个横断面数据集用于验证
152 2024-09-27
Anthropogenic fingerprints in daily precipitation revealed by deep learning
2023-Oct, Nature IF:50.5Q1
研究论文 本文利用深度学习技术在每日降水中检测出气候变化信号 首次使用深度学习方法在每日降水中检测出人为气候变化的信号 长期年均降水的变化仍难以从自然背景变率中区分出来 验证气候模型预测的全球变暖对降雨变率和极端事件的影响 每日降水量和全球平均地表气温数据 机器学习 NA 深度学习 卷积神经网络 (CNN) 气象数据 来自当前和未来气候模型模拟的每日降水量和年均全球地表气温数据
153 2024-09-27
Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration
2023-Oct, The British journal of radiology
综述 本文综述了多组学数据在精准肿瘤学中的应用,特别是人工智能(AI)和机器学习(ML)技术如何通过多组学整合来增强发现能力 探讨了AI和ML技术在癌症亚型分类、风险分层、预后预测和临床决策中的潜力 讨论了数据异质性、组学数据可用性和研究验证等方面的挑战 探讨AI和ML技术在精准肿瘤学中的应用,特别是通过多组学整合来增强发现能力 多组学数据,包括影像放射组学和各种类型的分子生物标志物 精准肿瘤学 癌症 多组学数据整合 NA 多组学数据 NA
154 2024-09-27
Explainable machine learning for diffraction patterns
2023-Oct-01, Journal of applied crystallography IF:5.2Q1
研究论文 本文研究了如何通过可解释的机器学习方法来分析衍射图案数据,特别是使用卷积神经网络(CNN)进行图像分类 本文首次提供了关于CNN在衍射图案数据分类中内部工作机制的定性证据,通过可视化方法展示了影响分类结果的关键图像区域 本文主要关注于定性分析,未提供定量性能的进一步改进 揭示卷积神经网络在衍射图案数据分类中的内部工作机制,并通过可视化方法展示关键图像区域 衍射图案数据及其在X射线自由电子激光设施中的应用 机器学习 NA 卷积神经网络(CNN) CNN 图像 NA
155 2024-09-27
Building deep learning and traditional chemometric models based on Fourier transform mid-infrared spectroscopy: Identification of wild and cultivated Gastrodia elata
2023-Oct, Food science & nutrition IF:3.5Q2
研究论文 本研究首次将三维相关光谱图像与深度学习模型结合,用于快速准确地识别野生和栽培的天麻 首次将三维相关光谱图像与深度学习模型结合,用于识别野生和栽培的天麻,且模型无需预处理原始光谱数据 未提及具体限制 快速准确地识别野生和栽培的天麻 野生和栽培的天麻 机器学习 NA 傅里叶变换中红外光谱 深度学习模型 光谱图像 46个样本
156 2024-09-27
Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
2023-Oct-01, Sensors (Basel, Switzerland)
研究论文 介绍了一种轻量级网络——空间和通道聚合网络(SCAN),用于图像超分辨率任务 首次在单图像超分辨率(SISR)方法中结合了大核卷积和特征减少操作,并引入了创新的9×9大核卷积以扩展感受野 未提及 解决现有SISR方法在性能和计算成本之间的平衡问题,提高图像超分辨率的效果和效率 图像超分辨率任务 计算机视觉 NA 大核卷积 空间和通道聚合网络(SCAN) 图像 使用了基准数据集和遥感数据集进行评估
157 2024-09-27
Generation of skin tone and pigmented region-modified images using a pigment discrimination model trained with an optical approach
2023-Oct, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) IF:2.0Q3
研究论文 本文介绍了一种结合光学方法和深度学习的混合技术,用于生成具有数值控制的皮肤色调和色素区域修改图像 本文的创新点在于引入了一种新的混合技术,结合光学方法和深度学习,实现了对皮肤色调和色素区域的精确数值控制 当前方法在数值控制和多功能性方面存在局限 研究目的是开发一种能够模拟多种色素沉着条件的技术,以扩展应用范围 研究对象是皮肤色调和色素区域,特别是与黑色素和血红蛋白相关的区域 计算机视觉 NA 深度学习 NA 图像 NA
158 2024-09-26
Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction
2023-Oct, European radiology IF:4.7Q1
研究论文 评估一种结合深度学习和最优表面图割方法的自动支气管参数提取方法的可重复性 结合深度学习和最优表面图割方法,自动分割气道管腔和壁,并计算支气管参数 自动测量方法在第7代及以后的气道中可重复性显著下降 评估自动支气管参数提取方法的可重复性 支气管参数的自动分割和测量 计算机视觉 NA 深度学习 深度学习模型 CT扫描图像 188名参与者,每人两次CT扫描,平均间隔3个月
159 2024-09-26
Large-scale automatic extraction of agricultural greenhouses based on high-resolution remote sensing and deep learning technologies
2023-Oct, Environmental science and pollution research international
研究论文 本文利用高分辨率遥感图像和深度学习技术,自动提取了中国山东省的大规模农业温室分布 首次实现了大规模高分辨率(约1米)的农业温室提取,并结合深度学习算法达到了94.04%的平均交并比 研究仅限于山东省,未涵盖其他地区 获取农业温室的空间分布,为农业生产、政策制定和环境保护提供支持 中国山东省的农业温室 计算机视觉 NA 高分辨率遥感图像 深度学习算法 图像 山东省总面积的1.11%,总耕地面积的2.31%,覆盖面积为1755.3平方公里
160 2024-09-25
Dataset of a parameterized U-bend flow for deep learning applications
2023-Oct, Data in brief IF:1.0Q3
研究论文 本文介绍了一个包含10,000个U型弯曲流体流动和传热模拟的数据集,适用于深度学习应用 该数据集的独特之处在于每个形状可以通过三种不同的数据类型表示,包括设计参数和目标组合、五种不同分辨率的2D图像以及数值模拟的网格单元值 NA 提供一个全面的基准数据集,用于研究设计优化领域中的各种问题和方法 U型弯曲流体流动和传热模拟 计算流体动力学 NA 计算流体动力学方法 深度学习 设计参数、2D图像、数值模拟网格单元值 10,000个模拟样本
回到顶部