深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202311-202311] [清除筛选条件]
当前共找到 152 篇文献,本页显示第 21 - 40 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2024-12-08
Optimizing diffuse optical imaging for breast tissues with a dual-encoder neural network to preserve small structural information and fine features
2023-Nov, Journal of medical imaging (Bellingham, Wash.)
研究论文 研究提出了一种双编码器神经网络用于优化乳腺组织的漫射光学成像,以保留微小的结构信息和精细特征 本研究的创新点在于提出了一种双编码器网络,通过增加一个平行分支直接从基础源获取信号信息,从而在不降低或与背景融合的情况下定位包含物 NA 研究旨在探讨一种双编码器深度学习模型,用于在漫射光学成像中成功检测不同尺寸肿瘤 乳腺组织的漫射光学成像 计算机视觉 NA 漫射光学成像 双编码器神经网络 图像 模拟和幻影测试数据集
22 2024-11-25
Use of deep learning to segment bolus during videofluoroscopic swallow studies
2023-11-23, Biomedical physics & engineering express IF:1.3Q3
研究论文 本文评估了一种用于视频荧光吞咽研究中分割钡餐的深度学习网络 利用人工智能进行解剖分割,以显著改善视频荧光吞咽研究的分析 钡餐在口腔中的表现因牙齿和不重要残留物的误分类而持续降低性能 评估钡餐分割网络的效能并识别影响网络性能的关键因素 80名独特患者的薄或液体钡餐的第一次吞咽 计算机视觉 NA 深度学习 U-Net 图像 80名患者的数据,分为75/25的训练和验证集,并进行4折交叉验证
23 2024-11-23
Inferring pointwise diffusion properties of single trajectories with deep learning
2023-11-21, Biophysical journal IF:3.2Q2
研究论文 本文提出了一种基于深度学习的机器学习方法,用于在实验时间分辨率下表征具有时间依赖性的扩散过程 该方法能够在单轨迹级别预测扩散系数或异常扩散指数等感兴趣的属性,无需对系统进行任何先验知识或假设 NA 旨在准确确定生物场景中粒子的扩散特性,揭示其背后的机制 单分子扩散的膜蛋白DC-SIGN和整合素α5β1 机器学习 NA 深度学习 NA 轨迹数据 两个膜蛋白的单分子扩散实验
24 2024-11-13
Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition
2023-11, Surgical endoscopy
研究论文 本文介绍了一种基于边缘计算的实时手术阶段识别系统,用于优化手术流程和视频评估 首次将边缘计算应用于手术阶段识别,实现了实时算法应用 实时预测的准确率在59.8%到78.2%之间,平均准确率为68.7% 开发一种实时手术阶段识别系统,以优化手术流程和视频评估 机器人腹股沟疝修复手术的阶段识别 计算机视觉 NA 深度学习 ResNet-50 视频 211个机器人腹股沟疝修复手术视频,用于训练和验证模型;10个机器人腹股沟疝修复手术视频,用于实时测试
25 2024-11-13
Structure-Aware Annotation of Leucine-rich Repeat Domains
2023-Nov-01, bioRxiv : the preprint server for biology
研究论文 本文开发了降维方法来注释亮氨酸重复序列域的重复单元,并验证了其在模型植物中的应用 利用深度学习预测的蛋白质结构信息改进了现有的基于序列的域注释方法,能够自动检测发夹环和结构异常 依赖于深度学习预测的蛋白质结构信息,可能存在预测误差 改进蛋白质域注释方法,特别是亮氨酸重复序列域的注释 亮氨酸重复序列域及其在模型植物中的应用 机器学习 NA 深度学习 NA 蛋白质结构 127个预测的亮氨酸重复序列域结构,并验证了172个手动注释的亮氨酸重复序列域
26 2024-11-07
Predicting early breast cancer recurrence from histopathological images in the Carolina Breast Cancer Study
2023-Nov-11, NPJ breast cancer IF:6.5Q1
研究论文 本文评估了基于深度学习的图像分析方法在预测早期乳腺癌复发中的应用 利用深度学习从组织病理学图像中提取信息,提供了一种新的早期乳腺癌复发预测方法 预测准确率为62.4%,略低于肿瘤分级和ER状态的预测准确率 开发一种快速识别高风险早期乳腺癌复发患者的方法 来自卡罗莱纳乳腺癌研究的202名患者的704张1毫米肿瘤核心H&E染色图像 数字病理学 乳腺癌 深度学习 深度学习模型 图像 202名患者,其中101名复发,101名未复发,每名患者2-4个核心样本
27 2024-11-06
Tailored multi-organ segmentation with model adaptation and ensemble
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种结合现成的单器官分割模型来开发多器官分割模型的新方法,以减少对多器官标注数据的依赖 本文提出了一种双阶段方法,包括模型适应阶段和模型集成阶段,以提高现成单器官分割模型在目标域上的泛化能力,并从多个适应后的单器官分割模型中提取和整合知识 NA 解决多器官分割任务中标注数据不足的问题 多器官分割模型 计算机视觉 NA 深度学习 CNN 图像 四个腹部数据集
28 2024-11-06
A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文介绍了一种用于监测和评估家庭远程无监督条件下康复训练的深度学习系统 该系统能够实时评估康复训练,提供精确的执行偏差分析,并结合了运动范围分类和代偿模式识别 NA 开发和验证一种经济可行的系统,用于监测和评估康复训练 康复训练中的运动范围和代偿模式 机器学习 NA 深度学习 NA 运动数据 6种阻力训练数据集
29 2024-11-06
Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种新的深度学习方法ICCPred,用于从蛋白质复合物的氨基酸序列中推断链间接触 该方法结合了预训练的语言模型和多视角的多序列比对,显著提高了链间接触预测的准确性 NA 提高蛋白质复合物链间接触预测的准确性 蛋白质复合物的链间接触 机器学习 NA 深度残差网络 深度残差网络 氨基酸序列 709个非冗余基准蛋白质复合物
30 2024-11-06
PKDN: Prior Knowledge Distillation Network for bronchoscopy diagnosis
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种用于支气管镜诊断的先验知识蒸馏网络(PKDN),通过提取病变图像的颜色和边缘特征,并结合动态空间注意模块和门控通道注意模块,增强特征提取能力,最终通过解耦蒸馏平衡目标和非目标类的重要性,提高诊断性能 本文的创新点在于引入了先验知识指导模块,提取病变图像的颜色和边缘特征,并结合动态空间注意模块和门控通道注意模块,增强特征提取能力,同时通过解耦蒸馏平衡目标和非目标类的重要性 本文的局限性在于仅在哈尔滨医科大学附属肿瘤医院的支气管镜数据集上进行了验证,未来需要在更多不同来源的数据集上进行验证以增强模型的泛化能力 本文的研究目的是提高基于深度学习的支气管镜图像诊断系统的准确性和效率,辅助医生进行肺部疾病的诊断 本文的研究对象是支气管镜图像中的肺部疾病诊断 计算机视觉 肺部疾病 深度学习 先验知识蒸馏网络(PKDN) 图像 2029张支气管镜图像,来自200名患者
31 2024-11-06
Enhancing gland segmentation in colon histology images using an instance-aware diffusion model
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于扩散模型的实例分割方法,用于自动分割结肠组织学图像中的腺体 本文创新性地将扩散模型应用于结肠组织学图像的腺体实例分割,并结合实例感知滤波器和多尺度掩码分支来恢复去噪过程中丢失的细节,同时使用条件编码增强中间特征以提高目标与背景的区分度 NA 开发一种自动分割结肠组织学图像中腺体实例的方法,以辅助结肠癌的分级诊断 结肠组织学图像中的腺体 计算机视觉 结肠癌 扩散模型 扩散模型 图像 使用了2015 MICCAI Gland Segmentation挑战赛数据集(165张图像)、Colorectal Adenocarcinoma Glands数据集(213张图像)和RINGS数据集(1500张图像)
32 2024-11-06
A Global and Local Feature fused CNN architecture for the sEMG-based hand gesture recognition
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种全局和局部特征融合的CNN架构,用于基于sEMG信号的手势识别 提出的GLF-CNN模型能够同时提取sEMG信号的全局和局部特征,从而提高手势识别的性能和稳定性 NA 改进基于sEMG信号的手势识别模型的性能 sEMG信号 机器学习 NA CNN GLF-CNN 信号 五个基准数据库,包括NinaPro DB4、NinaPro DB5、BioPatRec DB1-DB3和Mendeley Data
33 2024-11-06
Cross-domain mechanism for few-shot object detection on Urine Sediment Image
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种跨域机制,用于在尿沉渣图像上进行少样本目标检测 本文提出了背景抑制注意力(BSA)和特征空间微调模块(FSF),以减少背景信息的影响并调整特征分布,从而提高检测性能 本文未详细讨论该方法在其他医学图像数据集上的适用性 旨在解决医学图像领域中少样本目标检测的问题 尿沉渣图像中的目标检测 计算机视觉 NA 深度学习 NA 图像 使用了VOC、COCO数据集以及UriSed2K医学图像数据集进行实验
34 2024-11-06
Limit and screen sequences with high degree of secondary structures in DNA storage by deep learning method
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文研究了如何通过深度学习方法筛选和限制DNA存储中具有高二级结构的序列 提出了一种基于双向长短期记忆网络(BiLSTM)和注意力机制的深度学习模型,用于预测DNA序列的自由能,从而筛选出具有高二级结构的序列 仅在模拟实验和真实数据集上进行了验证,尚未在大规模实际应用中进行测试 研究如何减少DNA存储中高二级结构序列对信息写入和读取的干扰 DNA序列的二级结构及其对DNA存储的影响 机器学习 NA 深度学习 BiLSTM 序列 在模拟实验中使用了随机生成的DNA序列,并在真实数据集中筛选了94个预测自由能中的70个
35 2024-11-06
A multi-stage transfer learning strategy for diagnosing a class of rare laryngeal movement disorders
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种多阶段迁移学习策略,用于诊断一类罕见的喉部运动障碍 本文创新性地使用迁移学习策略,结合卷积自编码器和持续发音信息,提高了在数据有限情况下的诊断准确性 研究基于特定数据库,结果可能受限于数据集的规模和代表性 开发一种有效的诊断方法,用于识别罕见的喉部运动障碍 主要研究对象包括原发性震颤性发声障碍(ETV)、外展性和内收性痉挛性发声障碍(ABSD和ADSD) 机器学习 NA 迁移学习 卷积自编码器 语音数据 研究使用了来自范德堡大学医学中心(VUMC)的临床标记喉部运动障碍数据
36 2024-11-06
Enhancing the performance of premature ventricular contraction detection in unseen datasets through deep learning with denoise and contrast attention module
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于深度学习的新型注意力机制模型,用于在不同噪声水平下准确检测未见过的早搏数据集中的早搏 引入了Denoise and Contrast Attention Module (DCAM),通过卷积神经网络在频域去噪并关注差异,提高了模型的鲁棒性和泛化能力 NA 提高早搏检测模型的可靠性和泛化能力 早搏(PVC)检测 机器学习 心血管疾病 深度学习 CNN 心电图 六个外部测试数据集
37 2024-11-06
Whole slide image representation in bone marrow cytology
2023-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文研究了在骨髓细胞学中生成全切片图像(WSI)的紧凑表示方法 首次探索了使用深度学习训练机制生成骨髓细胞学中全切片图像的紧凑表示 NA 开发一种能够生成骨髓抽吸细胞学中全切片图像紧凑表示的方法,以支持血液学中的临床决策辅助工具 骨髓抽吸细胞学的全切片图像 数字病理学 血液病 深度学习 k-近邻模型 图像 NA
38 2024-10-27
CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning
2023-Nov, Nature methods IF:36.1Q1
研究论文 本文介绍了一种名为CryoREAD的深度学习方法,用于在低温电子显微镜(cryo-EM)图中对核酸进行从头结构建模 CryoREAD利用深度学习技术在cryo-EM图中识别磷酸、糖和碱基位置,并将其建模为三维结构,相比现有方法,在2.0到5.0 Å分辨率的cryo-EM图中构建了更准确的模型 NA 开发一种新的计算方法,用于在cryo-EM图中对核酸进行从头结构建模 DNA和RNA的三维结构及其与蛋白质的复合物 计算机视觉 NA 深度学习 深度学习模型 图像 测试了2.0到5.0 Å分辨率的cryo-EM图,并应用于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的生物分子复合物cryo-EM图
39 2024-10-21
Deep Learning Performance of Ultra-Widefield Fundus Imaging for Screening Retinal Lesions in Rural Locales
2023-Nov-01, JAMA ophthalmology IF:7.8Q1
研究论文 研究了基于超广角眼底图像的深度学习系统在农村地区筛查视网膜病变的表现 首次探索了使用超广角眼底图像的深度学习系统在农村地区筛查视网膜病变的可能性 农村地区的图像质量较差、病变比例多样且病变组成复杂,可能影响了深度学习系统的性能 探索基于超广角眼底图像的深度学习系统在农村地区筛查多种视网膜病变的表现 农村地区的视网膜病变筛查 计算机视觉 视网膜疾病 深度学习系统 深度学习系统 图像 6222只眼睛,3149名参与者
40 2024-10-20
Predictive analyses of regulatory sequences with EUGENe
2023-Nov, Nature computational science IF:12.0Q1
研究论文 本文介绍了一个名为EUGENe的FAIR工具包,用于使用深度学习分析基因组序列 EUGENe是一个简单、灵活且可扩展的接口,旨在简化并定制端到端的深度学习序列分析 NA 开发一个符合FAIR原则的工具包,用于深度学习在基因组学中的应用 基因组序列的深度学习分析 机器学习 NA 深度学习 神经网络 序列数据 NA
回到顶部