本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 41 | 2025-10-05 |
Deep Learning for Predicting Effect of Neoadjuvant Therapies in Non-Small Cell Lung Carcinomas With Histologic Images
2023-11, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100302
PMID:37580019
|
研究论文 | 开发深度学习模型从组织病理图像预测非小细胞肺癌新辅助治疗的主要病理缓解 | 提出多尺度补丁模型,能够自适应加权不同视野图像训练的多个卷积神经网络 | 样本量相对有限(125例病例),需要进一步验证 | 开发深度学习模型预测新辅助治疗后非小细胞肺癌的主要病理缓解 | 125例新辅助治疗后切除的非小细胞肺癌病例 | 数字病理 | 肺癌 | 苏木精-伊红染色 | CNN | 图像 | 125例非小细胞肺癌病例,261张全玻片图像 | NA | 多尺度补丁模型 | 准确率,F1分数,AUC | NA |
| 42 | 2025-10-05 |
Design and deep learning of synthetic B-cell-specific promoters
2023-11-27, Nucleic acids research
IF:16.6Q1
DOI:10.1093/nar/gkad930
PMID:37889080
|
研究论文 | 本研究设计合成B细胞特异性启动子,并通过深度学习模型预测其转录强度 | 设计了23,640个具有更大序列空间的B细胞特异性启动子,并首次构建能直接从序列预测免疫球蛋白V基因启动子转录强度的深度学习模型 | NA | 解析免疫球蛋白基因的转录机制并为B细胞工程提供启动子资源 | B细胞特异性启动子和免疫球蛋白V基因 | 合成生物学, 深度学习 | 免疫系统疾病 | MPRA(大规模平行报告基因检测) | 深度学习模型 | DNA序列数据 | 23,640个合成B细胞特异性启动子 | NA | NA | 转录强度预测 | NA |
| 43 | 2025-10-05 |
Explainable deep learning for tumor dynamic modeling and overall survival prediction using Neural-ODE
2023-11-18, NPJ systems biology and applications
IF:3.5Q1
DOI:10.1038/s41540-023-00317-1
PMID:37980358
|
研究论文 | 提出基于神经微分方程的肿瘤动态建模方法,用于肿瘤动态建模和总生存期预测 | 克服现有模型在截断数据预测中的偏差问题,提出具有时间广义齐次性的动力学规律表达 | NA | 提高肿瘤动态建模的预测能力,实现个性化治疗并改善决策过程 | 纵向肿瘤尺寸数据 | 机器学习 | 肿瘤 | 神经微分方程 | 神经网络 | 纵向数据 | NA | NA | 编码器-解码器架构, Neural-ODE | 准确率 | NA |
| 44 | 2025-10-05 |
Research hotspots and trends of artificial intelligence in rheumatoid arthritis: A bibliometric and visualized study
2023-11-10, Mathematical biosciences and engineering : MBE
DOI:10.3934/mbe.2023902
PMID:38124558
|
文献计量学研究 | 通过文献计量学方法分析人工智能在类风湿关节炎领域的研究热点与发展趋势 | 首次系统性地对人工智能在类风湿关节炎领域的文献进行计量学分析和可视化展示 | 仅基于Web of Science数据库文献,可能存在收录范围限制 | 分析人工智能在类风湿关节炎领域的研究特征和发展趋势 | 2003-2022年间859篇相关学术文献 | 医疗人工智能 | 类风湿关节炎 | 文献计量分析,可视化分析 | 机器学习,深度学习 | 文献元数据 | 859篇文献 | Microsoft Excel, R软件, VOSviewer | NA | NA | 标准计算机工作站 |
| 45 | 2025-10-05 |
Effective multi-class lungdisease classification using the hybridfeature engineering mechanism
2023-11-07, Mathematical biosciences and engineering : MBE
DOI:10.3934/mbe.2023896
PMID:38052644
|
研究论文 | 本文提出了一种基于混合特征工程的深度学习模型,用于胸部X射线图像的13种肺部疾病分类 | 提出了改进的Aquila优化卷积神经网络,结合优化CNN和DENSENET121并应用批量均衡化 | 未提及模型可解释性,未来需要探索可解释机器学习方法来理解模型决策 | 开发高效的计算机辅助模型用于肺部疾病分类 | 13种肺部疾病的胸部X射线图像 | 计算机视觉 | 肺部疾病 | 医学影像分析 | CNN, DENSENET121 | 图像 | 112,000张胸部X射线图像 | NA | 改进的Aquila优化CNN, DENSENET121 | 准确率, 精确率, 灵敏度, 特异性, F1分数 | NA |
| 46 | 2025-10-05 |
Artificial intelligence methods in kinase target profiling: Advances and challenges
2023-11, Drug discovery today
IF:6.5Q1
DOI:10.1016/j.drudis.2023.103796
PMID:37805065
|
综述 | 概述基于机器学习和深度学习的定量构效关系模型在激酶靶点分析中的最新进展 | 总结了激酶分析领域ML/DL-QSAR模型的最新发展趋势,并探讨了实验数据集构建和模型架构设计方面的挑战与未来方向 | NA | 为激酶药物发现中的选择性/特异性挑战提供解决方案,涉及先导化合物优化、药物重定位和药物副作用理解 | 激酶蛋白及其抑制剂 | 机器学习 | NA | 定量构效关系(QSAR) | 机器学习,深度学习 | 化学结构数据 | NA | NA | NA | NA | NA |
| 47 | 2025-10-05 |
Deep Learning-Facilitated Study of the Rate of Change in Photoreceptor Outer Segment Metrics in RPGR-Related X-Linked Retinitis Pigmentosa
2023-11-01, Investigative ophthalmology & visual science
IF:5.0Q1
DOI:10.1167/iovs.64.14.31
PMID:37988107
|
研究论文 | 本研究利用深度学习模型辅助测量三维光感受器外节指标,评估RPGR相关X连锁视网膜色素变性的纵向变化 | 首次结合深度学习模型对RPGR相关X连锁视网膜色素变性进行三维光感受器外节指标的纵向变化分析 | 样本量较小(34例患者),回顾性研究设计 | 评估RPGR相关X连锁视网膜色素变性中光感受器外节指标的纵向变化及其相关因素 | 34名RPGR相关X连锁视网膜色素变性男性患者 | 数字病理学 | 视网膜色素变性 | 光谱域光学相干断层扫描 | 深度学习模型 | 三维光学相干断层扫描图像 | 34名男性患者,具有约2年或更长的随访期 | NA | NA | 线性混合效应模型P值 | NA |
| 48 | 2025-10-05 |
Machine Learning-Based Prediction of Abdominal Subcutaneous Fat Thickness During Pregnancy
2023-11, Metabolic syndrome and related disorders
IF:1.3Q4
DOI:10.1089/met.2023.0043
PMID:37669001
|
研究论文 | 开发基于机器学习的孕期腹部皮下脂肪厚度预测模型 | 首次使用三种机器学习算法(深度学习、随机森林、支持向量机)预测孕妇不同孕期的腹部皮下脂肪厚度 | 样本量有限(354例),未说明模型验证方法 | 预测孕妇腹部皮下脂肪厚度以评估皮下注射安全性 | 孕妇腹部皮下脂肪厚度 | 机器学习 | 妊娠期糖尿病 | NA | 深度学习, 随机森林, 支持向量机 | 临床测量数据 | 354例孕妇 | SPSS, RapidMiner | NA | NA | NA |
| 49 | 2025-10-05 |
Deep learning for metabolic pathway design
2023-11, Metabolic engineering
IF:6.8Q1
DOI:10.1016/j.ymben.2023.09.012
PMID:37734652
|
综述 | 本文评估了深度学习在代谢通路设计中的应用及其对生物基循环经济的推动作用 | 系统探讨了深度学习技术在代谢通路预测和酶发现领域的最新进展 | 未涉及具体实验验证和实际应用案例 | 评估数字策略在代谢通路设计和微生物细胞工厂开发中的应用 | 代谢通路设计工具和微生物细胞工厂 | 机器学习 | NA | 深度学习 | NA | 化学和代谢域数据 | NA | NA | NA | NA | NA |
| 50 | 2025-10-05 |
A Two-Stage Automatic System for Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms
2023-11, eNeuro
IF:2.7Q3
DOI:10.1523/ENEURO.0111-23.2023
PMID:37914407
|
研究论文 | 开发基于深度学习的自动系统,用于从头皮脑电图中检测发作间期癫痫样放电 | 提出结合时序卷积网络的IED检测器和新型双蒙太奇决策机制的两阶段自动检测系统 | 仅使用484份头皮脑电图记录,样本规模有限 | 开发性能可靠的自动IED检测系统以辅助临床脑电图解读 | 头皮脑电图中的发作间期癫痫样放电 | 医疗信号处理 | 癫痫 | 脑电图 | 深度神经网络 | 脑电图信号 | 484份头皮脑电图记录(406训练,78测试) | NA | 时序卷积网络, 深度神经网络 | AUPRC, 假阳性率, F1分数, kappa一致性分数 | NA |
| 51 | 2025-10-06 |
Social Media Images Can Predict Suicide Risk Using Interpretable Large Language-Vision Models
2023-11-29, The Journal of clinical psychiatry
IF:4.5Q1
DOI:10.4088/JCP.23m14962
PMID:38019588
|
研究论文 | 本研究开发了一个可解释的预测模型,利用社交媒体图像预测临床有效的自杀风险 | 首次证明公开可用的图像可用于预测经过验证的自杀风险,结合理论驱动特征与自下而上方法,提供简单灵活的策略 | 数据来源于2018年特定时间段,样本量相对有限,仅基于Facebook用户数据 | 开发可解释的自杀风险预测模型,解决现有AI方法的黑箱问题 | 841名Facebook用户上传的177,220张图像 | 多模态学习 | 心理健康疾病 | 对比语言-图像预训练(CLIP) | 逻辑回归,深度学习 | 图像 | 841名用户,177,220张图像 | CLIP | CLIP,逻辑回归 | AUC, Cohen's d | NA |
| 52 | 2025-10-06 |
Accurate staging of chick embryonic tissues via deep learning of salient features
2023-11-15, Development (Cambridge, England)
DOI:10.1242/dev.202068
PMID:37830145
|
研究论文 | 本研究开发了一种基于深度学习的鸡胚胎组织精确分期方法 | 通过生物信息学转换和数据驱动预处理步骤,在小样本数据集上成功训练出高精度的分期分类器 | 数据集规模较小(151张图像),可能影响模型的泛化能力 | 开发精确无偏的鸡胚胎组织分期方法 | HH10期鸡胚胎大脑和翅膀组织 | 计算机视觉 | NA | 显微镜成像 | CNN | 图像 | 151张鸡大脑图像和269张鸡翅膀图像 | NA | 深度卷积神经网络 | 准确率 | NA |
| 53 | 2025-10-06 |
Deep learning based source imaging provides strong sublobar localization of epileptogenic zone from MEG interictal spikes
2023-11-01, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2023.120366
PMID:37716593
|
研究论文 | 本研究开发了一种基于深度学习的电磁源成像框架,用于从MEG间歇性棘波中精确定位癫痫灶 | 结合中尺度神经元建模和深度学习,直接学习MEG数据中的传感器-源映射关系,提供超越传统物理源模型的替代方法 | 研究样本量相对有限(29名患者),且依赖于计算机模拟和临床验证的准确性 | 开发更准确和稳健的癫痫灶定位方法,提升MEG源定位和成像能力 | 29名药物抵抗性局灶性癫痫患者 | 医学影像分析 | 癫痫 | 脑磁图(MEG),颅内脑电图(iEEG),磁共振成像(MRI) | 深度学习 | 脑磁图数据,MRI数据 | 29名药物抵抗性局灶性癫痫患者 | NA | 基于神经质量模型的深度学习架构 | 空间离散度,脑叶一致性,敏感性,特异性,定位误差 | NA |
| 54 | 2025-10-06 |
In silico co-crystal design: Assessment of the latest advances
2023-11, Drug discovery today
IF:6.5Q1
DOI:10.1016/j.drudis.2023.103763
PMID:37689178
|
综述 | 本文综述了机器学习、深度学习和基于网络的推荐方法在药物共结晶领域的应用进展 | 系统评估了机器学习在药物共晶体设计中的最新应用,并比较了晶体结构预测作为替代方法的价值 | NA | 评估机器学习方法在药物共晶体设计中的最新进展 | 药物共晶体 | 机器学习 | NA | 机器学习,深度学习,网络推荐方法,晶体结构预测 | NA | 晶体结构数据 | NA | NA | NA | NA | NA |
| 55 | 2025-10-06 |
Epistasis regulates genetic control of cardiac hypertrophy
2023-Nov-20, Research square
DOI:10.21203/rs.3.rs-3509208/v1
PMID:38045390
|
研究论文 | 本研究开发新方法揭示心脏肥大的复杂遗传架构,发现表观遗传相互作用在心脏结构调控中的重要作用 | 开发低信号符号迭代随机森林方法,结合深度学习从心脏MRI估计左心室质量,首次系统揭示心脏肥大的表观遗传调控网络 | 研究方法仍处于早期发展阶段,样本来源相对单一(主要基于UK Biobank数据) | 探索心脏肥大的复杂遗传调控机制,特别是表观遗传相互作用 | 人类心脏组织、诱导多能干细胞来源的心肌细胞 | 机器学习 | 心血管疾病 | 心脏MRI、RNA沉默、单细胞形态分析、微流体系统 | 随机森林、深度学习 | 遗传数据、医学影像数据、转录组数据 | UK Biobank中29,661个体的心脏MRI扫描,313例人类心脏组织的转录组数据 | NA | NA | NA | NA |
| 56 | 2025-10-06 |
Flow-field inference from neural data using deep recurrent networks
2023-Nov-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.11.14.567136
PMID:38014290
|
研究论文 | 提出一种名为FINDR的无监督深度学习方法,用于从神经群体活动中推断低维非线性随机动力学 | 开发了能够解耦任务相关和无关神经活动成分的深度循环网络方法,首次实现了流场和吸引子结构的显式可视化 | 方法性能主要在大鼠前脑区听觉决策任务数据上验证,在其他脑区和行为任务中的适用性需要进一步测试 | 推断神经群体活动背后的低维非线性随机动力学 | 大鼠前脑区在执行听觉决策任务时的群体脉冲序列数据 | 计算神经科学 | NA | 神经信号记录 | 循环神经网络 | 神经脉冲序列数据 | NA | NA | 深度循环网络 | 神经元响应捕捉能力 | NA |
| 57 | 2025-10-06 |
Predicting multiple sclerosis severity with multimodal deep neural networks
2023-11-09, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-023-02354-6
PMID:37946182
|
研究论文 | 本文提出了一种利用多模态深度神经网络预测多发性硬化症疾病严重程度的方法 | 首次整合结构化电子健康记录数据、神经影像数据和临床笔记构建多模态深度学习框架,相比单模态模型AUROC提升高达19% | 未明确说明样本规模和数据收集的具体限制 | 预测多发性硬化症疾病严重程度,为早期治疗干预提供支持 | 多发性硬化症患者 | 医疗人工智能 | 多发性硬化症 | 多模态深度学习,电子健康记录分析,神经影像分析 | 深度神经网络 | 结构化电子健康记录,神经影像,临床文本笔记 | NA | NA | 多模态深度神经网络 | AUROC | NA |
| 58 | 2025-10-06 |
A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma
2023-Nov, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-023-05358-x
PMID:37673824
|
研究论文 | 本研究开发了一种基于多组学数据整合的深度学习框架,用于构建皮肤黑色素瘤风险分层预测模型 | 结合早期融合特征自编码器和晚期融合特征自编码器的深度学习框架,相比单一策略的自编码器或PCA方法能更好地区分风险亚型 | NA | 构建皮肤黑色素瘤的风险亚型分型模型以改善预后预测 | 皮肤黑色素瘤患者 | 机器学习 | 皮肤黑色素瘤 | mRNA测序, miRNA测序, DNA甲基化测序 | 自编码器, SVM | 多组学数据 | TCGA数据库中的皮肤黑色素瘤患者数据及两个独立验证数据集 | NA | 自编码器 | C-index, log-rank P值 | NA |
| 59 | 2025-10-06 |
Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study
2023-Nov, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-023-05339-0
PMID:37672075
|
研究论文 | 开发并验证基于平扫CT的多通道深度学习模型,用于区分乏脂肪血管平滑肌脂肪瘤与肾细胞癌 | 首次提出基于平扫CT的多通道深度学习模型,通过全肿瘤分析实现fp-AML与RCC的准确区分 | 回顾性研究设计,样本量相对有限(共452例患者),仅在两所医疗中心进行验证 | 开发并评估用于区分乏脂肪血管平滑肌脂肪瘤与肾细胞癌的深度学习模型 | 肾肿瘤患者,包括乏脂肪血管平滑肌脂肪瘤和肾细胞癌病例 | 数字病理 | 肾癌 | CT成像 | 深度学习 | CT图像 | 452例患者(FAHSYSU 320例,SYSUCC 132例) | NA | 多通道深度学习模型 | AUC, 95%置信区间 | NA |
| 60 | 2025-10-06 |
SMiT: symmetric mask transformer for disease severity detection
2023-Nov, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-023-05223-x
PMID:37698681
|
研究论文 | 提出一种用于疾病严重程度检测的对称掩码Transformer模型SMiT | 采用纯Transformer框架而非传统CNN模型,提出对称掩码预训练方法使模型更专注于病灶区域细节特征 | NA | 开发用于病理图像诊断分级的智能诊断系统 | 结直肠癌病理图像和糖尿病视网膜病变图像 | 计算机视觉 | 结直肠癌, 糖尿病视网膜病变 | 高斯滤波去噪 | Transformer | 图像 | 4500张结直肠癌组织病理图像和公开数据集APTOS2019 | NA | Transformer | 准确率, Cohen Kappa, F1-score | NA |