深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202311-202311] [清除筛选条件]
当前共找到 152 篇文献,本页显示第 141 - 152 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
141 2024-08-05
LncRNA expression signature identified using genome-wide transcriptomic profiling to predict lymph node metastasis in patients with stage T1 and T2 gastric cancer
2023-11, Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association IF:6.0Q1
研究论文 这篇文章描述了一种新的10-lncRNA表达特征,用于预测早期胃癌患者的淋巴结转移 提出了一种基于深度学习的10-lncRNA风险预测模型,能够有效识别早期胃癌的LN转移 尚未详细描述研究中的潜在偏差或随访数据 识别淋巴结转移的有效方法以改善早期胃癌的治疗决策 T1和T2期胃癌患者的淋巴结状态 数字病理学 胃癌 转录组分析 深度学习模型 基因表达数据 涉及T1和T2患者的多个样本,具体数字未提供
142 2024-08-05
Review of machine learning and deep learning models for toxicity prediction
2023-11, Experimental biology and medicine (Maywood, N.J.)
综述 本文总结了近年来基于机器学习和深度学习的毒性预测模型。 综述了各种机器学习和深度学习算法在毒性预测中的应用,强调了数据集质量对模型性能的影响。 不同数据集中对相同化学品的毒性分配存在差异,说明缺乏基准数据集以开发可靠的毒性预测模型。 评估化学品的毒性以保护公众健康和环境。 近年来开发的毒性预测模型,特别是基于机器学习和深度学习的模型。 机器学习 NA 机器学习和深度学习 支持向量机,随机森林,深度神经网络等 数据集 NA
143 2024-08-05
A biologically inspired architecture with switching units can learn to generalize across backgrounds
2023-Nov, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 该文章展示了一种生物启发的网络结构,通过切换单元可以学习在不同背景下进行泛化 提出了一种瓶颈切换网络,这是一种类生物的架构,可以避免在新背景下的灾难性遗忘 未详细讨论与其他生物启发机制的比较 研究如何通过生物感知原则来提高人工系统的环境适应能力 使用MNIST数字及CIFAR-10数据集探索在不同背景下的数字分类 机器学习 NA NA 切换网络 图像 使用MNIST数字数据集和CIFAR-10数据集的样本
144 2024-08-07
Deep Learning-Facilitated Study of the Rate of Change in Photoreceptor Outer Segment Metrics in RPGR-Related X-Linked Retinitis Pigmentosa
2023-Nov-01, Investigative ophthalmology & visual science IF:5.0Q1
研究论文 本研究利用深度学习模型(DLM)辅助测量视网膜色素上皮(RPGR)相关X连锁视网膜色素变性(XLRP)患者的视网膜外节(OS)三维(3D)指标,并评估这些指标的纵向变化及其相关因素 本研究首次利用深度学习模型辅助测量视网膜外节的三维指标,并评估其在视网膜色素变性中的应用 本研究为回顾性队列研究,样本仅包括34名男性患者,可能存在选择偏倚 旨在评估视网膜外节指标在视网膜色素变性中的纵向变化及其相关因素 视网膜色素上皮(RPGR)相关X连锁视网膜色素变性(XLRP)患者的视网膜外节(OS)三维指标 计算机视觉 视网膜色素变性 深度学习 深度学习模型(DLM) 图像 34名男性患者
145 2024-08-07
Cusp bifurcation in a metastatic regulatory network
2023-11-07, Journal of theoretical biology IF:1.9Q3
研究论文 本文探讨了利用尖点分岔理论来模拟转移性乳腺癌系统的可能性 首次将双参数分岔理论应用于转移性系统,并提出了一种基于数学理论的转移性细胞状态转换的新视角 NA 旨在从基础生物学和临床角度理解癌症转移的潜力 转移性乳腺癌系统 NA 乳腺癌 常微分方程 (ODEs) NA NA NA
146 2024-08-07
Editorial Comment: Implementing Deep Learning to Extrapolate Hepatic Proton Density Fat Fraction From T1-Weighted In-Phase and Opposed-Phase MRI
2023-11, AJR. American journal of roentgenology
NA NA NA NA NA NA NA NA NA NA NA NA
147 2024-08-07
Deep learning for embryo evaluation using time-lapse: a systematic review of diagnostic test accuracy
2023-11, American journal of obstetrics and gynecology IF:8.7Q1
综述 本研究旨在调查使用时间流逝监测的卷积神经网络模型在胚胎评估中的准确性 应用人工智能在时间流逝监测中提供更高效、准确和客观的胚胎评估 本系统综述受限于所包含研究之间的高度异质性 调查卷积神经网络模型在胚胎评估中的诊断测试准确性 胚胎评估的准确性 机器学习 NA 卷积神经网络 CNN 图像 共分析了522,516张图像,涉及222,998个胚胎
148 2024-08-07
Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction
2023-Nov, Diagnostic and interventional imaging IF:4.9Q1
综述 本文综述了人工智能在心脏CT领域的最新进展,特别是在提高诊断和预测预后方面的应用 深度学习技术在放射学中的应用,实现了从大型数据集中自动提取特征和学习,特别是在基于图像的应用中 需要进一步的研究和验证来全面评估这些AI驱动技术在心脏CT中的诊断性能、辐射剂量减少能力和临床正确性 探讨人工智能在心脏CT领域的应用,以提高诊断和预测预后的准确性 心脏CT图像分析及相关诊断技术 计算机视觉 心血管疾病 深度学习 CNN 图像 NA
149 2024-08-07
DLC-ac4C: A Prediction Model for N4-acetylcytidine Sites in Human mRNA Based on DenseNet and Bidirectional LSTM Methods
2023-Nov-22, Current genomics IF:1.8Q3
研究论文 本文提出了一种基于DenseNet和双向LSTM方法的预测模型DLC-ac4C,用于识别人类mRNA中的N4-乙酰胞苷位点 本研究通过结合DenseNet和双向LSTM,并引入通道注意力机制,更好地从序列角度捕捉隐藏的信息特征,提高了ac4C位点的识别效果 NA 改进现有计算方法在ac4C位点预测中的性能不足,提出一种新的集成深度学习预测框架 人类mRNA中的N4-乙酰胞苷位点 机器学习 NA DenseNet, 双向LSTM DenseNet, 双向LSTM RNA序列 独立测试数据
150 2024-08-07
Machine-guided discovery of a real-world rogue wave model
2023-Nov-28, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文通过因果分析、深度学习、简约模型选择和符号回归,从波浪浮标的大量观测数据中发现海洋怪浪的符号模型 本文提出了一种结合机器学习与因果分析的方法,将黑盒模型转化为可解释的数学方程,提高了预测准确性并保持了与现有波浪理论的一致性 NA 探索如何利用机器学习模型的高级模式匹配能力进行科学发现 海洋怪浪的符号模型 机器学习 NA 深度学习、符号回归 人工神经网络 数据 大量波浪浮标的观测数据
151 2024-08-07
Deep Learning-Based Analysis of Glottal Attack and Offset Times in Adductor Laryngeal Dystonia
2023-Nov-15, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本文开发了一种基于深度学习的自动化测量方法,用于从高速度视频喉镜(HSV)中测量连接言语中的声门攻击时间(GAT)和声门关闭时间(GOT),以辅助诊断声带肌张力障碍(AdLD)。 本文创新地设计并训练了一个深度学习框架,用于自动分割声门区域并检测声带边缘,从而实现对GAT和GOT的自动测量。 NA 开发一种自动化测量方法,以辅助诊断声带肌张力障碍(AdLD)。 声带肌张力障碍(AdLD)患者和正常发音的成年人。 自然语言处理 NA 高速度视频喉镜(HSV) 深度学习框架 视频 来自声带肌张力障碍患者和正常发音成年人的HSV数据,包括阅读'Rainbow Passage'和六个CAPE-V句子的记录。
152 2024-08-07
Artificial Intelligence and Machine Learning Applications in Sudden Cardiac Arrest Prediction and Management: A Comprehensive Review
2023-11, Current cardiology reports IF:3.1Q2
综述 本文综述旨在全面概述近期在预测模型和AI及ML在心肺复苏(CPR)成功预测中的应用进展 深度学习在放射组学和人口健康中日益突出,用于疾病风险预测;AI与自动体外除颤器(AEDs)结合显示出在心脏骤停事件中更好检测可电击节律的潜力 心脏骤停(SCA)的预测和预防仍是一个持续挑战,尽管有先进的第一响应系统,但生存率仍然很低 理解AI和ML在医疗保健中的作用,特别是在医学诊断、统计和精准医学中,并探索其在预测和管理心脏骤停结果中的应用 AI和ML在医疗保健中的应用,特别是在医学诊断、统计和精准医学中,以及在预测和管理心脏骤停结果中的应用 机器学习 心血管疾病 NA 深度学习 NA NA
回到顶部