深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202311-202311] [清除筛选条件]
当前共找到 219 篇文献,本页显示第 161 - 180 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
161 2024-10-13
Protein language models can capture protein quaternary state
2023-Nov-14, BMC bioinformatics IF:2.9Q1
研究论文 本文探讨了蛋白质语言模型在预测蛋白质四级结构中的应用 首次研究了嵌入技术在预测蛋白质四级结构中的能力 模型性能不如基于已解析晶体结构的方法 探索蛋白质语言模型在预测蛋白质四级结构中的潜力 蛋白质的四级结构 机器学习 NA 深度学习 蛋白质语言模型(如ESM-2) 蛋白质序列 来自QSbio数据集的大量蛋白质数据 NA NA NA NA
162 2024-10-13
Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility detection in Escherichia coli
2023-11-14, Communications biology IF:5.2Q1
研究论文 本文介绍了一种基于深度学习的单细胞表型分析方法,用于快速检测大肠杆菌的抗生素敏感性 提出了一种新的概念验证方法,通过深度学习单细胞特定的形态表型来直接关联大肠杆菌的抗生素敏感性 仅在实验室参考的完全敏感的大肠杆菌菌株和六种来自人类血流感染的大肠杆菌菌株上进行了验证 开发一种快速检测大肠杆菌抗生素敏感性的方法,以应对抗生素耐药性的上升 大肠杆菌的抗生素敏感性 计算机视觉 NA 深度学习 深度学习模型 图像 六种来自人类血流感染的大肠杆菌菌株 NA NA NA NA
163 2024-10-13
Effect of the telemedicine-supported multicomponent exercise therapy in patients with knee osteoarthritis: study protocol for a randomized controlled trial
2023-Nov-14, Trials IF:2.0Q3
研究论文 研究远程医疗支持的多成分运动疗法对膝骨关节炎患者的疗效 结合运动疗法、患者教育和健康指导,通过mHealth应用程序在家中进行治疗 现有研究中存在患者依从性问题和缺乏客观评估方法 评估多成分运动疗法对膝骨关节炎患者疼痛自我管理的有效性 膝骨关节炎患者 NA 骨关节炎 NA NA NA 未具体说明 NA NA NA NA
164 2024-10-13
Conformer Generation for Structure-Based Drug Design: How Many and How Good?
2023-11-13, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文探讨了构象生成在基于结构的药物设计中的重要性,并研究了构象集合的大小、多样性和质量对药物发现任务性能的影响 本文通过实验阐明了构象集合的大小、多样性和质量对药物发现任务性能的影响,并比较了先进的生成深度学习方法与经典几何方法的性能 NA 研究构象生成在基于结构的药物设计中的最佳实践 构象集合的大小、多样性和质量对药物发现任务性能的影响 药物设计 NA 生成深度学习 NA 分子结构 NA NA NA NA NA
165 2024-10-13
Counting manatee aggregations using deep neural networks and Anisotropic Gaussian Kernel
2023-Nov-13, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的海牛聚集计数方法,使用各向异性高斯核(AGK)和低质量图像来自动计算海牛数量 本文创新性地使用了各向异性高斯核(AGK)来捕捉不同聚集中个体海牛的形状,并将其应用于多种深度神经网络以学习海牛密度 NA 开发一种自动计数海牛聚集的方法,以观察其习性并设计安全规则和护理计划 海牛及其聚集 计算机视觉 NA 各向异性高斯核(AGK) 深度神经网络(包括VGG、SANet、CSRNet、MARUNet等) 图像 使用从监控视频中提取的低质量图像进行实验 NA NA NA NA
166 2024-10-13
Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis
2023-11-10, Genome biology IF:10.1Q1
研究论文 本文探讨了基于深度学习的特征选择方法在单细胞RNA测序数据分析中的应用 本文提出了基于深度学习的特征选择方法,与传统的基于差异分布的方法相比,该方法通过神经网络确定基因的重要性 NA 评估基于深度学习的特征选择方法在单细胞RNA测序数据分析中的效用 单细胞RNA测序数据 机器学习 NA 单细胞RNA测序 神经网络 基因表达数据 从Tabula Muris和Tabula Sapiens图谱中采样创建的单细胞RNA测序数据集 NA NA NA NA
167 2024-10-13
trRosettaRNA: automated prediction of RNA 3D structure with transformer network
2023-11-09, Nature communications IF:14.7Q1
研究论文 本文介绍了trRosettaRNA,一种基于深度学习的RNA三维结构预测自动化方法 trRosettaRNA在RNA三维结构预测中表现优异,尤其是在CASP15和RNA-Puzzles实验中的盲测中,其预测结果与顶尖人类预测结果相当 对于合成RNA的准确结构预测仍然具有挑战性 开发一种自动化方法来预测RNA的三维结构 RNA的三维结构 机器学习 NA 深度学习 Transformer网络 RNA结构数据 涉及CASP15和RNA-Puzzles实验中的RNA样本 NA NA NA NA
168 2024-10-13
SDF4CHD: Generative Modeling of Cardiac Anatomies with Congenital Heart Defects
2023-Nov-08, ArXiv
PMID:37961745
研究论文 本文提出了一种用于生成具有先天性心脏缺陷的心脏解剖结构的生成模型 本文提出了一种类型和形状解耦的生成方法,能够捕捉不同先天性心脏缺陷类型中观察到的广泛心脏解剖结构,并合成保留特定先天性心脏缺陷类型独特拓扑结构的形状 NA 改进先天性心脏缺陷患者的诊断和治疗计划 具有先天性心脏缺陷的心脏解剖结构 计算机视觉 先天性心脏缺陷 深度学习 生成模型 图像 NA NA NA NA NA
169 2024-10-13
Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things
2023-Nov, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) IF:2.0Q3
研究论文 本文提出了一种混合深度学习方法,用于在医疗物联网(IoMT)环境中对皮肤病变进行分割和分类 本文的创新点在于结合了Mask Region-based Convolutional Neural Network(MRCNN)和ResNet50两种先进方法,以提高皮肤病变分析的准确性和效率 NA 提高皮肤病变分析的准确性和效率 皮肤病变 计算机视觉 NA 混合深度学习 MRCNN, ResNet50 图像 大量标注的皮镜图像 NA NA NA NA
170 2024-10-09
Multi-class deep learning architecture for classifying lung diseases from chest X-Ray and CT images
2023-11-08, Scientific reports IF:3.8Q1
研究论文 本文提出了一种用于从胸部X光和CT图像中分类多种肺部疾病的自动化系统 本文提出了一种新的图像增强算法,使用k-符号Lerch超越函数模型,并结合定制的卷积神经网络(CNN)和两个预训练的深度学习模型(AlexNet和VGG16Net)进行图像分类 NA 开发一种自动化的系统,用于从胸部X光和CT图像中检测多种肺部疾病 胸部X光和CT图像中的肺部疾病 计算机视觉 肺部疾病 卷积神经网络(CNN) CNN 图像 公开可用的图像数据集(CT和X光图像数据集) NA NA NA NA
171 2024-10-09
Identification of hybrids between the Japanese giant salamander (Andrias japonicus) and Chinese giant salamander (Andrias cf. davidianus) using deep learning and smartphone images
2023-Nov, Ecology and evolution IF:2.3Q2
研究论文 本研究利用深度学习和智能手机图像识别日本大鲵和中国大鲵的杂交个体 首次采用EfficientNetV2模型和智能手机图像进行杂交个体的识别 样本数量有限,仅包括11个日本大鲵和20个杂交个体的图像 开发一种基于深度学习的方法,用于识别日本大鲵和中国大鲵的杂交个体,以保护生物多样性 日本大鲵和中国大鲵的杂交个体 计算机视觉 NA 深度学习 EfficientNetV2 图像 11个日本大鲵和20个杂交个体的图像 NA NA NA NA
172 2024-10-08
Three-dimensional label-free morphology of CD8 + T cells as a sepsis biomarker
2023-Nov-07, Light, science & applications
研究论文 研究探讨了三维无标记CD8+ T细胞形态作为脓毒症生物标志物的潜力 首次提出三维无标记CD8+ T细胞形态作为脓毒症的生物标志物,并开发了深度学习模型进行预测 样本量较小,仅包括8名脓毒症恢复患者和20名健康对照 研究三维无标记CD8+ T细胞形态作为脓毒症诊断和预后生物标志物的潜力 脓毒症患者和健康对照的CD8+ T细胞形态 数字病理学 脓毒症 深度学习 深度学习模型 细胞形态 8名脓毒症恢复患者和20名健康对照 NA NA NA NA
173 2024-10-08
Can Deep Adult Lung Segmentation Models Generalize to the Pediatric Population?
2023-Nov-01, Expert systems with applications IF:7.5Q1
研究论文 本文研究了深度成人肺分割模型在儿科人群中的泛化能力,并提出了一种改进性能的方法 提出了新的评估指标MLCD和AHS,并采用分阶段系统方法通过CXR模态特定的权重初始化、堆叠集成和集成堆叠集成来提高性能 NA 分析深度成人肺分割模型在儿科人群中的泛化能力,并提出改进方法 成人肺分割模型在儿科人群中的应用 计算机视觉 NA 深度学习 CNN 图像 NA NA NA NA NA
174 2024-10-08
A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future
2023-Nov, Aging clinical and experimental research IF:3.4Q2
综述 本文综述了机器学习算法及其在老年医学中的应用现状和未来发展 本文详细描述了各种机器学习算法的分类、用途和能力,并特别关注了其在老年医学中的应用 本文主要集中在算法的技术层面和临床应用,未深入探讨数据隐私和伦理问题 探讨机器学习算法在老年医学中的应用及其未来发展 机器学习算法及其在老年医学中的应用 机器学习 老年病 NA NA NA NA NA NA NA NA
175 2024-10-08
THPLM: a sequence-based deep learning framework for protein stability changes prediction upon point variations using pretrained protein language model
2023-11-01, Bioinformatics (Oxford, England)
研究论文 提出了一种基于序列的深度学习框架THPLM,用于预测蛋白质稳定性变化,使用预训练的蛋白质语言模型ESM-2 利用预训练的蛋白质语言模型ESM-2和简单的卷积神经网络,THPLM在蛋白质稳定性变化预测方面表现优异 NA 探索蛋白质稳定性变化的预测方法,特别是在点突变情况下的预测 蛋白质稳定性变化 机器学习 NA 深度学习 卷积神经网络 序列 NA NA NA NA NA
176 2024-10-05
Direct prediction of gas adsorption via spatial atom interaction learning
2023-Nov-03, Nature communications IF:14.7Q1
研究论文 本文介绍了一种名为DeepSorption的空间原子相互作用学习网络,用于直接预测气体吸附 提出了DeepSorption模型,通过考虑全局结构和局部空间原子相互作用,实现了对晶体多孔材料吸附性能的准确、快速预测 NA 开发一种能够快速准确预测晶体多孔材料气体吸附性能的深度学习模型 晶体多孔材料的气体吸附性能 机器学习 NA 深度学习 Matformer 原子坐标和化学元素类型信息 NA NA NA NA NA
177 2024-10-05
An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning
2023-Nov-02, Nature communications IF:14.7Q1
研究论文 本文介绍了一种可逆且不变的晶体表示方法SLICES,用于固态材料的逆向设计 开发了一种名为SLICES的简化线输入晶体编码系统,解决了固态材料设计中缺乏可逆晶体表示的问题 NA 解决固态材料设计中缺乏可逆晶体表示的问题,并应用于光电应用中的直接窄带隙半导体逆向设计 固态材料及其结构排列 材料科学 NA 生成式深度学习 NA 晶体结构数据 超过40,000种结构和化学多样化的晶体结构 NA NA NA NA
178 2024-10-05
Image harmonization and deep learning automated classification of plus disease in retinopathy of prematurity
2023-Nov, Journal of medical imaging (Bellingham, Wash.)
研究论文 本文开发了一种基于深度学习的方法,用于自动分类早产儿视网膜病变中的plus疾病,并使用智能手机摄像头获取的图像进行图像协调 本文创新性地使用智能手机摄像头和廉价镜头获取眼底图像,并通过预处理管道增强血管和协调图像,然后使用深度学习进行分类 研究结果基于有限的数据集,未来需要更大规模的数据集进行验证 开发一种能够使用智能手机图像进行plus疾病分期的算法和软件 早产儿视网膜病变中的plus疾病 计算机视觉 眼科疾病 深度学习 GoogLeNet 图像 有限的数据集 NA NA NA NA
179 2024-10-05
Hybrid deep learning model based smart IOT based monitoring system for Covid-19
2023-Nov, Heliyon IF:3.4Q1
研究论文 本文设计了一种基于物联网的智能健康监测系统,用于监测COVID-19患者的生理参数,并提出了一种基于循环卷积神经网络(RCNN)和拼图优化算法(PO)的分类方法 本文提出了一种创新的循环卷积神经网络(RCNN)和拼图优化算法(PO)的混合模型,用于分类和监测患者的生理参数 NA 设计一种基于物联网的智能健康监测系统,用于远程监测COVID-19患者的生理参数 COVID-19患者的生理参数,如血氧水平、血压、体温和心率 机器学习 COVID-19 物联网(IoT) 循环卷积神经网络(RCNN) 生理参数数据 NA NA NA NA NA
180 2024-09-29
4Dflow-VP-Net: A deep convolutional neural network for noninvasive estimation of relative pressures in stenotic flows from 4D flow MRI
2023-11, Magnetic resonance in medicine IF:3.0Q2
研究论文 提出了一种基于深度学习的方法,利用4D流MRI数据非侵入性地估计狭窄流中的相对压力梯度 提出了一种新的深度学习方法4Dflow-VP-Net,用于从4D流MRI速度数据中估计狭窄血管中的压力梯度 需要进一步验证该方法在不同临床条件下的适用性和准确性 开发一种非侵入性的方法来估计狭窄流中的相对压力梯度 狭窄血管中的相对压力梯度 计算机视觉 心血管疾病 4D流MRI 深度卷积神经网络 图像 16名患有中度和重度主动脉狭窄的患者 NA NA NA NA
回到顶部