本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
221 | 2024-08-05 |
Combining generative modelling and semi-supervised domain adaptation for whole heart cardiovascular magnetic resonance angiography segmentation
2023-12-20, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
IF:4.2Q1
DOI:10.1186/s12968-023-00981-6
PMID:38124106
|
研究论文 | 本研究探讨了在全心脏心血管磁共振血管造影分割中,结合生成模型与半监督领域适应的方法 | 提出了一种创新的结合生成对抗网络和变分自编码器的无监督领域适应架构,用于处理全心脏CMRA分割问题 | 仅使用了较少的标记案例进行训练,可能会影响模型的泛化能力 | 提高心血管磁共振血管造影的分割质量 | 常规和高分辨率的全心脏心血管磁共振图像 | 计算机视觉 | 心血管疾病 | 生成对抗网络、变分自编码器 | 无监督生成模型 | 影像 | 常规CMRA (n=20) 和高分辨率CMRA (n=45) |
222 | 2024-08-05 |
Artificial Intelligence-Triaged 3-Dimensional Pathology to Improve Detection of Esophageal Neoplasia While Reducing Pathologist Workloads
2023-Dec, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100322
PMID:37657711
|
研究论文 | 本研究提出了一种基于深度学习的方法,以提高食道肿瘤的早期检测并减少病理学家的工作负担 | 提出了一种自动识别3D病理数据集中最关键2D图像部分的深度学习方法,生成肿瘤风险的3D热图 | 研究中使用的3D病理数据集的庞大体积可能仍对现有技术进步带来了挑战 | 旨在通过3D病理技术提高食道肿瘤的检测率 | 食道活检样本 | 数字病理学 | 食道癌 | 深度学习 | NA | 图像 | 临床验证研究中每种活检使用3张图像,共涉及食道活检 |
223 | 2024-08-07 |
Combining pairwise structural similarity and deep learning interface contact prediction to estimate protein complex model accuracy in CASP15
2023-Dec, Proteins
IF:3.2Q2
DOI:10.1002/prot.26542
PMID:37357816
|
研究论文 | 本文开发了一种结合成对结构相似性评分和基于深度学习的界面接触概率评分的混合方法,用于评估蛋白质复合体模型准确性 | 提出了一种结合成对结构相似性评分和界面接触概率评分的混合方法,用于评估蛋白质复合体模型准确性,这在以往的研究中较少应用 | 当多个结构模型质量较低且彼此相似时,成对相似性方法往往失效 | 评估蛋白质复合体和组装体的四级结构模型的准确性 | 蛋白质复合体和组装体的四级结构模型 | 计算机视觉 | NA | 深度学习 | CNN | 结构模型 | 参与CASP15的多个目标模型 |
224 | 2024-08-07 |
Assessment of three-dimensional RNA structure prediction in CASP15
2023-Dec, Proteins
IF:3.2Q2
DOI:10.1002/prot.26602
PMID:37876231
|
研究论文 | 本文评估了CASP15中RNA三维结构预测的表现,这是首次涉及RNA结构建模的CASP练习。 | 首次在CASP中评估RNA结构预测,并使用蛋白质评估的指标和方法进行RNA评估。 | 在模型细节预测、模型排序和多结构预测方面仍存在挑战。 | 评估RNA三维结构预测在CASP15中的表现。 | RNA三维结构预测模型。 | NA | NA | NA | NA | NA | 42个预测组提交了至少一个RNA结构模型的预测。 |
225 | 2024-08-07 |
In silico evolution of autoinhibitory domains for a PD-L1 antagonist using deep learning models
2023-Dec-05, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2307371120
PMID:38032933
|
研究论文 | 本文测试了一种使用深度学习(DL)进行结构预测(AlphaFold2)和序列优化(ProteinMPNN)的蛋白质设计流程,以设计PD-L1拮抗剂的自抑制域(AiDs)。 | 本研究展示了基于DL的蛋白质建模可以快速生成高亲和力的蛋白质结合剂。 | NA | 旨在创造一种在到达肿瘤环境之前不活跃的抗癌药物。 | 设计自抑制形式的PD-L1拮抗剂,该拮抗剂可以在肿瘤富集的蛋白酶作用下解除抑制。 | 机器学习 | NA | 深度学习(DL) | AlphaFold2, ProteinMPNN | 蛋白质序列 | 23个从头设计的AiDs |
226 | 2024-08-07 |
Live-cell imaging in the deep learning era
2023-12, Current opinion in cell biology
IF:6.0Q1
DOI:10.1016/j.ceb.2023.102271
PMID:37897927
|
研究论文 | 本文探讨了深度学习在活细胞成像中的应用及其对关键任务的辅助作用 | 介绍了深度学习在活细胞成像中的新应用,包括漂移校正、去噪、超分辨率成像、人工标记、跟踪和时间序列分析 | NA | 探讨深度学习在活细胞成像中的应用及其对关键任务的辅助作用 | 活细胞成像技术及其数据分析 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
227 | 2024-08-07 |
Artificial intelligence for evaluating the risk of gastric cancer: reliable detection and scoring of intestinal metaplasia with deep learning algorithms
2023-12, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2023.06.056
PMID:37392953
|
研究论文 | 本文研究使用深度学习算法评估胃癌风险,特别是通过深度卷积神经网络(DCNN)模型ResNet50检测和评分肠上皮化生(IM) | 开发了一种基于深度学习的AI系统,用于评估胃癌风险,该系统能够准确、可靠且重复地检测和评分肠上皮化生 | 该AI系统在识别小的肠上皮化生病灶方面存在局限 | 开发一种AI系统,用于准确评估胃癌风险 | 胃癌风险评估,特别是肠上皮化生的检测和评分 | 机器学习 | 胃癌 | 深度卷积神经网络(DCNN) | ResNet50 | 图像 | 5753张图像 |
228 | 2024-08-07 |
A deep learning image analysis method for renal perfusion estimation in pseudo-continuous arterial spin labelling MRI
2023-Dec, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2023.09.007
PMID:37776961
|
研究论文 | 本文提出了一种基于伪连续动脉自旋标记磁共振成像的深度学习图像分析方法,用于自动估计肾移植患者的肾灌注 | 该方法利用机器/深度学习工具自动分割和分类肾皮质和髓质组织,并自动估计灌注值 | NA | 开发一种自动化的方法来估计肾灌注,以辅助肾移植手术后的评估 | 肾移植患者的肾灌注 | 机器学习 | NA | 伪连续动脉自旋标记(PCASL) | 深度学习 | 图像 | 16名肾移植患者 |
229 | 2024-08-07 |
Explainable variational autoencoder (E-VAE) model using genome-wide SNPs to predict dementia
2023-12, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2023.104536
PMID:37926392
|
研究论文 | 本研究开发了一种可解释的变分自编码器(E-VAE)模型,利用全基因组SNP数据预测痴呆症 | 首次展示了使用遗传变异在独立队列中进行深度学习预测模型对痴呆症的泛化能力 | NA | 阐明与阿尔茨海默病相关痴呆症(ADRD)相关的生物学机制 | 阿尔茨海默病及相关痴呆症(ADRD) | 机器学习 | 痴呆症 | GWAS | 变分自编码器(VAE) | 基因型数据 | 2714名研究参与者和234名验证参与者 |
230 | 2024-08-07 |
Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer's disease
2023-12, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文提出了一种深度学习框架,结合多级引导生成对抗网络(MLG-GAN)和多模态变换器(Mul-T),用于生成不完整图像和疾病分类 | 提出了多级引导生成对抗网络(MLG-GAN)和多模态变换器(Mul-T),能够生成缺失数据并结合全局和局部特征进行疾病诊断 | NA | 开发一种新的深度学习框架,用于处理不完整的多模态脑图像并提高阿尔茨海默病诊断的准确性 | 多模态脑图像和阿尔茨海默病 | 机器学习 | 阿尔茨海默病 | 生成对抗网络(GAN) | 多模态变换器(Mul-T) | 图像 | 三个独立数据集(ADNI-1、ADNI-2和OASIS-3) |
231 | 2024-08-07 |
Image reconstruction using UNET-transformer network for fast and low-dose PET scans
2023-12, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文提出了一种基于UNET-transformer网络的图像重建方法,用于快速和低剂量的PET扫描 | 结合UNET和Transformer网络的优势,提高低剂量PET图像重建的质量,同时保留边缘和小细节 | 由于可用数据有限和采集图像中噪声水平高,这是一个具有挑战性的问题 | 开发一种有效且准确的基于深度学习的方法,用于重建低剂量PET图像 | 低剂量PET图像 | 计算机视觉 | NA | PET扫描 | UNET-transformer | 图像 | 使用Brainweb仿真数据集和Siemens Biograph mMR PET扫描仪采集的真实患者数据集 |
232 | 2024-08-07 |
A review on brain tumor segmentation based on deep learning methods with federated learning techniques
2023-12, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
综述 | 本文综述了基于深度学习和联邦学习技术的脑肿瘤分割方法 | 提出了联邦学习方法以提高全局分割性能并确保隐私 | 集中于未解决的脑肿瘤分割问题和客户端联邦模型训练策略 | 探讨最有效的脑肿瘤分割技术,并提出联邦学习方法以改进性能 | 脑肿瘤分割技术及其在医学影像中的应用 | 计算机视觉 | 脑肿瘤 | 联邦学习 | CNN | 图像 | 超过100篇相关论文 |
233 | 2024-08-07 |
Research on augmented reality navigation of in vitro fenestration of stent-graft based on deep learning and virtual-real registration
2023-12, Computer assisted surgery (Abingdon, England)
DOI:10.1080/24699322.2023.2289339
PMID:38059572
|
研究论文 | 本研究提出了一种基于深度学习和虚拟现实注册的增强现实导航方法,用于辅助体外支架移植术中的开窗操作 | 本研究采用了基于深度学习的大动脉分割算法和基于Vuforia的虚拟现实注册与标记识别算法,实现了自动快速的大动脉分割和准确的现场增强现实图像 | NA | 旨在提出一种增强现实导航方法,用于体外支架移植术中的开窗操作,以提供现场叠加显示来定位开窗位置 | 体外支架移植术中的开窗操作 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | NA |
234 | 2024-08-07 |
A Hierarchical Spatial Transformer for Massive Point Samples in Continuous Space
2023-Dec, Advances in neural information processing systems
PMID:38751689
|
研究论文 | 本文提出了一种新的分层空间变换器模型,用于处理连续空间中的大量点样本 | 引入了多分辨率表示学习在四叉树层次结构中,并通过粗略近似实现高效的空间注意力,设计了一个不确定性量化分支来估计与输入特征噪声和点稀疏性相关的预测置信度 | NA | 设计一种适用于连续空间中大量点样本的变换器模型 | 环境科学中的传感器观测、数值模拟中的粒子载流、天体物理学以及基于位置的服务中的POI和轨迹等数据 | 机器学习 | NA | 变换器模型 | 分层空间变换器 | 点样本 | 最多可达一百万点样本 |
235 | 2024-08-07 |
Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment
2023-Dec, Proteins
IF:3.2Q2
DOI:10.1002/prot.26609
PMID:37905971
|
研究论文 | 本文展示了CAPRI第54轮(CASP-CAPRI蛋白质组装预测挑战的第5次联合)的结果,该轮提供了37个目标,包括14个同源二聚体、3个同源三聚体、13个异源二聚体(包括3个抗体-抗原复合物)和7个大复合体。 | 研究显示,由于广泛使用AlphaFold2和AlphaFold2-Multimer软件及其提供的置信度指标,预测性能有了显著提高,高质量模型产出的目标比例从两年前的8%提升至约40%。 | 尽管取得了进步,但对于含有抗体和纳米体的复合物以及具有构象灵活性的复合物,预测性能仍然较差,表明蛋白质复合物的预测仍然是一个挑战性问题。 | 评估AlphaFold在蛋白质复合物结构预测中的影响。 | 37个蛋白质复合物目标,包括同源和异源二聚体、三聚体以及大复合体。 | 计算机视觉 | NA | AlphaFold2, AlphaFold2-Multimer | 深度学习 | 蛋白质结构模型 | 37个目标,涉及约70个预测组和15个评分组提交的21,941个模型 |
236 | 2024-08-07 |
Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm
2023-Dec-09, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.12.07.23299625
PMID:38106064
|
研究论文 | 本研究使用基于患者胸部CT扫描的3D打印PixelPrint肺部幻影,评估商业深度学习重建(DLR)算法在不同辐射剂量水平下的临床成像性能 | 使用基于患者的3D打印PixelPrint肺部幻影,提供比传统CT幻影更真实的组织结构,实现基于结构的图像质量评估 | NA | 评估深度学习重建算法在不同辐射剂量下的临床成像性能 | 深度学习重建算法和3D打印PixelPrint肺部幻影 | 计算机视觉 | NA | 3D打印技术 | 深度学习重建算法 | 图像 | 使用了一个基于患者胸部CT扫描的肺部幻影,并通过不同大小的扩展环模拟小和中等体型的患者 |
237 | 2024-08-07 |
Deep learning prediction of hospital readmissions for asthma and COPD
2023-Dec-13, Respiratory research
IF:4.7Q1
DOI:10.1186/s12931-023-02628-7
PMID:38093373
|
研究论文 | 本研究旨在通过电子健康记录(EHR)数据,利用机器学习和深度学习模型预测哮喘和慢性阻塞性肺病(COPD)患者的再入院风险 | 本研究首次采用多层感知器(一种深度学习方法)在预测哮喘和COPD患者再入院方面表现出最佳的敏感性和特异性 | NA | 通过EHR数据和深度学习技术提高高风险患者的检测 | 哮喘和COPD患者的再入院风险 | 机器学习 | 哮喘,慢性阻塞性肺病 | 深度学习 | 多层感知器 | 电子健康记录数据 | 5,794名患者,其中1,893名哮喘患者和3,901名COPD患者 |
238 | 2024-08-07 |
Environmental Impacts of Machine Learning Applications in Protein Science
2023-12-01, Cold Spring Harbor perspectives in biology
IF:6.9Q1
DOI:10.1101/cshperspect.a041473
PMID:38040454
|
research paper | 本文总结了蛋白质科学对环境的负面影响,并展示了分子模拟、蛋白质相互作用推断和蛋白质结构预测等流行蛋白质算法的碳足迹 | 本文首次详细分析了大型深度学习模型如AlphaFold和ESMFold在蛋白质科学应用中的碳足迹 | 文章未提及具体的减排技术和方法的实施细节 | 探讨机器学习在蛋白质科学应用中的环境影响,并提出可持续发展的策略 | 蛋白质科学中的机器学习应用及其环境影响 | machine learning | NA | deep learning | CNN | NA | NA |
239 | 2024-08-07 |
Deep learning-based phenotype imputation on population-scale biobank data increases genetic discoveries
2023-Dec, Nature genetics
IF:31.7Q1
DOI:10.1038/s41588-023-01558-w
PMID:37985819
|
研究论文 | 本文提出了一种基于深度学习的表型填补方法AutoComplete,用于在人口规模生物银行数据集中填补缺失的表型 | AutoComplete方法在表型填补准确性上显著优于现有方法,并能有效增加遗传关联分析的关联位点数量 | NA | 提高现有生物银行数据集中遗传发现的效力 | 人口规模生物银行数据集中的缺失表型 | 机器学习 | NA | 深度学习 | 深度学习模型 | 生物银行数据 | 约300,000名个体 |