深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202312-202312] [清除筛选条件]
当前共找到 239 篇文献,本页显示第 41 - 60 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
41 2025-03-02
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
42 2025-02-28
DeepOmicsAE: Representing Signaling Modules in Alzheimer's Disease with Deep Learning Analysis of Proteomics, Metabolomics, and Clinical Data
2023-12-15, Journal of visualized experiments : JoVE
NA NA NA NA NA NA NA NA NA NA NA NA
43 2025-02-28
Artificial Intelligence-based System for Detecting Attention Levels in Students
2023-12-15, Journal of visualized experiments : JoVE
研究论文 本文提出了一种基于人工智能的系统,用于检测学生的注意力水平,通过分析学生的情绪、视线方向、身体姿势和生物特征数据来帮助教师优化教学过程 创新点在于整合多种数据源(如情绪、视线、姿势和生物特征数据)来训练AI系统,以自动识别学生的注意力水平,并提出创建标注数据集和注意力分类器的方案 整合不同类型的数据具有挑战性,需要创建标注数据集,且依赖专家输入和现有研究进行准确标注 研究目标是利用AI技术自动检测学生的注意力水平,以帮助教师调整教学策略,优化教学效果 研究对象是课堂中的学生 机器学习 NA 深度学习 NA 图像、生物特征数据 未明确提及样本数量
44 2025-02-22
Spatial and Compositional Biomarkers in Tumor Microenvironment Predicts Clinical Outcomes in Triple-Negative Breast Cancer
2023-Dec-20, bioRxiv : the preprint server for biology
研究论文 本文通过成像质谱流式细胞术和计算算法,研究了三阴性乳腺癌肿瘤微环境的空间和组成特征,以预测临床结果 首次在单细胞分辨率下量化三阴性乳腺癌肿瘤微环境的细胞分布模式和空间组织,并利用深度学习模型预测患者对治疗的反应 样本量较小(58例患者),且仅针对三阴性乳腺癌,可能限制了结果的普适性 探索三阴性乳腺癌肿瘤微环境的特征及其与临床结果的关系,以发现新的治疗靶点 三阴性乳腺癌患者的肿瘤微环境 数字病理学 乳腺癌 成像质谱流式细胞术,深度学习 深度学习模型 图像数据 58例三阴性乳腺癌患者样本
45 2025-02-21
Deep Learning for Automated Measurement of Total Cardiac Volume for Heart Transplantation Size Matching
2023-Dec-28, Research square
研究论文 本研究旨在通过深度学习技术自动测量心脏总体积(TCV),以促进心脏移植中的尺寸匹配 首次使用3D卷积神经网络(3D-CNN)自动计算TCV,提高了测量的准确性和效率 模型在移植心脏上的准确性略低于正常心脏,且样本量相对较小 开发一种快速且准确的TCV测量方法,以促进心脏移植中的尺寸匹配 0-30岁受试者的CT扫描图像 计算机视觉 心血管疾病 CT扫描 3D-CNN(结合Dense-Net和ResNet架构) 图像 270名受试者用于训练,44名受试者用于验证(其中36名正常,8名心脏病患者)
46 2025-02-21
Robust Epileptic Seizure Detection Using Long Short-Term Memory and Feature Fusion of Compressed Time-Frequency EEG Images
2023-Dec-02, Sensors (Basel, Switzerland)
研究论文 本文提出了一种结合时间频率域特征和EEG信号统计属性的新型模型,用于癫痫发作检测 创新点在于将时间频率域特征与EEG信号的统计属性(如均值、中位数和方差)融合,并通过自编码器处理压缩的时间频率图像,使用LSTM网络进行优化 模型在复杂现实环境中的鲁棒性和精确性可能受到限制 提高癫痫发作检测的准确性和及时性 癫痫患者的EEG信号 机器学习 癫痫 自编码器 LSTM EEG信号图像 Bonn癫痫数据集
47 2025-02-21
A Novel Classification Model Using Optimal Long Short-Term Memory for Classification of COVID-19 from CT Images
2023-12, Journal of digital imaging IF:2.9Q2
研究论文 本文提出了一种基于鹈鹕优化算法的长短期记忆网络(POA-LSTM)方法,用于从CT图像中分类COVID-19 使用POA-LSTM模型进行COVID-19分类,结合了nnU-Net进行ROI分割和HRNet进行特征提取,提高了分类性能 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 开发一种自动检测COVID-19的深度学习模型,以提高诊断准确性 COVID-19患者的CT扫描图像 计算机视觉 COVID-19 深度学习 LSTM, nnU-Net, HRNet CT图像 NA
48 2025-02-19
Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15
2023-12, Proteins IF:3.2Q2
研究论文 本文报告了UM-TBM和Zheng团队在CASP15中蛋白质单体和复合物结构预测的结果,使用了D-I-TASSER和DMFold-Multimer算法 D-I-TASSER在CASP15中引入了四个新特性,包括多源MSA搜索、基于注意力网络的空间约束、多域模块和优化的I-TASSER折叠模拟系统,显著提高了预测精度 未来在病毒蛋白质建模和复合物模型排名方面仍有改进空间 提高蛋白质单体和复合物结构预测的准确性 蛋白质单体和复合物 生物信息学 NA 多序列比对(MSA)、深度学习、蒙特卡罗模拟 D-I-TASSER、DMFold-Multimer、AlphaFold2 蛋白质序列和结构数据 47个自由建模目标和38个复合物目标
49 2025-02-07
Graph Neural Networks in Cancer and Oncology Research: Emerging and Future Trends
2023-Dec-15, Cancers IF:4.5Q1
综述 本文综述了图神经网络(GNNs)在癌症和肿瘤学研究中的应用,并探讨了未来的研究趋势 本文首次系统性地总结了2020年以来GNN在癌症和肿瘤学研究中的应用,并提出了未来研究的方向 本文主要基于现有文献进行综述,未涉及具体的实验验证 探讨图神经网络在癌症和肿瘤学研究中的应用及其未来趋势 癌症和肿瘤学研究中的多模态图数据 机器学习 癌症 图神经网络(GNNs) GNN 图数据(分子结构、空间分辨成像、数字病理学、生物网络、知识图谱等) NA
50 2025-01-24
Deep Learning Models for Predicting Left Heart Abnormalities From Single-Lead Electrocardiogram for the Development of Wearable Devices
2023-12-25, Circulation journal : official journal of the Japanese Circulation Society IF:3.1Q2
研究论文 本研究开发了基于单导联心电图(Lead I ECG)的深度学习模型,用于预测左心异常,以支持可穿戴设备的发展 首次利用单导联心电图数据开发深度学习模型,用于检测多种左心异常,并在多中心数据集上验证其性能优于或等同于心脏病专家使用12导联心电图的诊断结果 研究依赖于特定数据集,可能无法完全推广到其他人群或设备 开发基于单导联心电图的深度学习模型,用于预测左心异常,以支持可穿戴设备的应用 左心异常(包括低射血分数、室壁运动异常、左心室肥厚、左心室扩张和左心房扩张) 机器学习 心血管疾病 深度学习 深度学习模型 心电图数据 229,439对心电图和超声心动图数据,来自8个设施,并在2个设施的外部数据上验证
51 2025-01-16
Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures
2023-Dec-30, medRxiv : the preprint server for health sciences
研究论文 本文利用深度学习技术识别了大脑衰老的五个主要维度,并探讨了这些维度与临床、生活方式和遗传因素之间的关联 使用先进的深度表示学习方法Surreal-GAN,首次在大规模多样化人群中量化了大脑衰老的五个主要模式,并揭示了这些模式与多种生物医学、生活方式和遗传因素的显著关联 研究依赖于MRI数据,可能无法完全捕捉大脑衰老的所有复杂性和细微变化 通过深度学习技术精确描述个体大脑衰老的神经退行性特征,并探索其与多种因素的关联 49,482名来自11项研究的个体 机器学习 老年疾病 MRI, Surreal-GAN GAN 图像 49,482名个体
52 2025-01-16
Deep Learning-based Diagnosis and Localization of Pneumothorax on Portable Supine Chest X-ray in Intensive and Emergency Medicine: A Retrospective Study
2023-Dec-04, Journal of medical systems IF:3.5Q2
研究论文 本研究开发了两种基于深度学习的系统,用于在便携式仰卧位胸部X光片(SCXRs)上诊断和定位气胸 创新点在于开发了两种深度学习系统,分别基于目标检测和图像分割技术,用于气胸的诊断和定位,并在不同患者和图像特征的数据集上表现出良好的外部泛化能力 随着气胸尺寸的减小,两种系统的性能有所下降 开发用于气胸诊断和定位的深度学习系统 便携式仰卧位胸部X光片(SCXRs) 计算机视觉 气胸 深度学习 EfficientNet-B2, DneseNet-121, Inception-v3, Deformable DETR, TOOD, VFNet, UNet 图像 训练集1571张图像,测试集1071张图像
53 2025-01-07
Ultrafast Cardiac Imaging Using Deep Learning for Speckle-Tracking Echocardiography
2023-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
研究论文 本文探讨了使用深度学习进行超快速心脏成像的方法,特别是针对斑点追踪超声心动图 本文创新性地将复杂加权卷积神经网络(CNN)用于图像重建,并结合先进的斑点追踪方法,评估了在保持心脏运动追踪能力的同时实现高质量图像重建的可行性 虽然本文在模拟和实验数据上展示了良好的性能,但在实际临床环境中的应用仍需进一步验证 研究目的是开发一种能够在超快速超声成像中同时实现高质量图像重建和心脏运动追踪的深度学习方法 心脏成像,特别是斑点追踪超声心动图 计算机视觉 心血管疾病 深度学习,斑点追踪超声心动图 CNN 图像 模拟数据、体外实验数据(旋转盘模型)和体内数据集
54 2025-01-07
Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging
2023-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
综述 本文综述了深度学习在光声和超声(PAUS)成像中的应用背景和现状 探讨了深度学习如何克服当前PAUS成像系统的技术限制,并识别了将PAUS技术稳健转化为临床应用的挑战和机遇 使用传统有限视角和带宽传感器无法提供高质量的光声源图,尤其是血管结构 总结深度学习在PAUS成像中的应用,并探讨其临床转化的潜力 光声和超声(PAUS)成像技术 医学影像 NA 深度学习 NA 图像 NA
55 2024-12-28
Learned Tensor Low-CP-Rank and Bloch Response Manifold Priors for Non-Cartesian MRF Reconstruction
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种结合MRF物理先验和数据相关性约束的联合重建模型,用于非笛卡尔MRF重建 提出了一种学习的CANDECOMP/PARAFAC (CP)分解模块来利用高维MRF数据的张量低秩先验,并提出了Bloch响应流形模块来学习重建MRF数据与多参数映射之间的关系 当前深度学习方法通常缺乏可解释性,且大多数不适用于非笛卡尔场景 提高非笛卡尔MRF重建的准确性和计算效率 磁共振指纹成像(MRF)数据 医学影像处理 NA 磁共振指纹成像(MRF) 深度神经网络 MRF数据 NA
56 2024-12-28
Continual Nuclei Segmentation via Prototype-Wise Relation Distillation and Contrastive Learning
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种新的连续学习核分割方法,通过原型关系蒸馏和对比学习来避免旧类知识的遗忘并促进新类的学习 提出了原型关系蒸馏和对比学习的方法,解决了连续学习中的灾难性遗忘问题 未提及具体的数据集规模限制或计算资源需求 研究在连续学习框架下进行多类型核分割的问题 多类型核分割 计算机视觉 NA 深度学习 NA 图像 使用了MoNuSAC和CoNSeP两个多类型核分割基准数据集
57 2024-12-28
TT U-Net: Temporal Transformer U-Net for Motion Artifact Reduction Using PAD (Pseudo All-Phase Clinical-Dataset) in Cardiac CT
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种基于深度学习的框架,用于减少动态心脏CT中的运动伪影 提出了TT U-Net(Temporal Transformer U-Net),利用自注意力机制在时间维度上编码运动信息,从而更好地减少运动伪影 NA 减少动态心脏CT中的运动伪影 心脏CT图像 数字病理学 心血管疾病 深度学习 TT U-Net 图像 基于PAD(Pseudo All-phase clinical-Dataset)构建的数据集
58 2024-12-28
Stable Deep MRI Reconstruction Using Generative Priors
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种基于生成图像先验的稳定深度MRI重建方法 提出了一种新颖的深度神经网络正则化器,仅在参考幅度图像上进行生成训练,并在经典变分方法中嵌入训练模型,实现了高质量的重建 尽管在对比度变化等分布外数据上表现出稳定行为,但临床常规应用仍面临挑战 解决MRI重建中的泛化性和可解释性问题 磁共振成像(MRI)数据 计算机视觉 NA 深度神经网络 生成模型 图像 NA
59 2024-12-28
Subspace Model-Assisted Deep Learning for Improved Image Reconstruction
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种结合模型驱动和数据驱动学习的新方法,用于改进图像重建 该方法通过整合线性向量空间框架、深度网络和基于展开的深度网络,解决了深度学习重建中的数据扰动敏感性和泛化能力有限的问题 需要大量训练数据来学习高维图像先验,这在医学成像应用中目前尚不可用 改进从有限和/或稀疏数据中进行图像重建的方法 图像重建 计算机视觉 NA 深度学习 深度网络 图像 NA
60 2024-12-28
Breast Fibroglandular Tissue Segmentation for Automated BPE Quantification With Iterative Cycle-Consistent Semi-Supervised Learning
2023-12, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种新颖的迭代循环一致性半监督学习框架,用于乳腺纤维腺体组织分割,以实现自动化的背景实质增强(BPE)量化 提出了一种迭代循环一致性半监督学习框架,通过使用大量未标注的配对前后对比图像来提升分割性能,并设计了重建网络与分割网络级联,探索两阶段图像之间的相互关系 需要大量未标注的配对前后对比图像,且实验仅在两个数据集上进行验证 提高乳腺纤维腺体组织分割的准确性,实现自动化的背景实质增强(BPE)量化 乳腺纤维腺体组织 计算机视觉 乳腺癌 动态对比增强磁共振成像(DCE-MRI) 半监督学习框架 图像 两个数据集
回到顶部