本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 81 | 2025-10-06 |
Physics-informed deep learning for T2-deblurred superresolution turbo spin echo MRI
2023-12, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.29814
PMID:37578085
|
研究论文 | 提出一种融合物理信息的深度学习超分辨率方法,用于T2去模糊的涡轮自旋回波MRI图像重建 | 首次在深度学习超分辨率中引入物理真实的T2权重退化模型,改进了传统k空间截断方法的局限性 | 方法主要针对涡轮自旋回波MRI序列,在其他MRI序列上的适用性需要进一步验证 | 开发能够加速MRI扫描时间的超分辨率重建方法 | 基因工程小鼠胚胎模型的涡轮自旋回波MRI图像 | 医学影像分析 | NA | 涡轮自旋回波MRI | GAN | MRI图像 | 6-7个小鼠胚胎的500层图像体积 | NA | 生成对抗网络 | 定量成像指标, 专家评分 | NA |
| 82 | 2025-10-06 |
Predictive modelling of brain disorders with magnetic resonance imaging: A systematic review of modelling practices, transparency, and interpretability in the use of convolutional neural networks
2023-12-15, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.26521
PMID:37909364
|
系统综述 | 对使用卷积神经网络和MRI数据进行脑部疾病预测建模的研究实践、透明度和可解释性进行系统性评估 | 首次系统评估脑部疾病CNN预测建模的方法学差异,并提出改善临床整合的具体建议 | 仅纳入55项研究,可能未涵盖所有相关文献;定性分析可能受主观判断影响 | 评估基于CNN的脑部疾病MRI预测建模的方法学质量并提出改进建议 | 55项使用CNN和MRI数据进行脑部疾病预测建模的研究 | 医学影像分析 | 脑部疾病 | 结构磁共振成像 | CNN | MRI图像 | NA | NA | NA | NA | NA |
| 83 | 2025-10-06 |
Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images
2023-12, Experimental biology and medicine (Maywood, N.J.)
DOI:10.1177/15353702231220664
PMID:38279511
|
研究论文 | 本研究构建并评估了一个基于超声图像的深度学习模型,用于准确区分良恶性甲状腺结节 | 首次将深度学习模型与80名放射科医生进行诊断性能比较,并利用Grad-CAM可视化模型决策过程以增强可解释性 | 诊断准确率有待进一步提高,需要在初级医疗机构中验证辅助诊断价值 | 开发能够准确区分良恶性甲状腺结节的AI诊断工具 | 甲状腺结节的超声图像 | 计算机视觉 | 甲状腺结节 | 超声成像 | CNN | 图像 | 655个独立甲状腺结节的2096张超声图像,独立测试集包含100例 | NA | ResNet | 灵敏度, 特异度, 准确率 | NA |
| 84 | 2025-10-06 |
Deep learning with citizen science data enables estimation of species diversity and composition at continental extents
2023-12, Ecology
IF:4.4Q1
DOI:10.1002/ecy.4175
PMID:37781963
|
研究论文 | 利用深度学习框架分析公民科学数据,实现大陆尺度物种多样性和组成的估算 | 首次采用深度推理网络实现深度多元概率模型,结合大规模观测和环境数据集进行全年候分析 | NA | 为生态研究和保护决策提供准确、高分辨率的生物多样性信息 | 北美鸟类群落,特别是北美林莺类保护群体 | 机器学习 | NA | 公民科学数据收集,环境变量分析 | 深度神经网络 | 观测数据,环境数据 | 超过900万份eBird检查清单,72个环境协变量 | DMVP-DRNets | 深度推理网络,深度多元概率模型 | NA | NA |
| 85 | 2025-10-06 |
A robust class decomposition-based approach for detecting Alzheimer's progression
2023-12, Experimental biology and medicine (Maywood, N.J.)
DOI:10.1177/15353702231211880
PMID:38059336
|
研究论文 | 提出一种基于类别分解的迁移学习方法,用于从结构磁共振成像中检测阿尔茨海默病的进展 | 结合类别分解技术与迁移学习,提出CDTL方法解决医学图像分类中的类别不平衡问题 | 需要依赖预训练模型和特定数据集,可能受数据分布影响 | 评估CDTL方法在不同ADNI队列中检测阿尔茨海默病认知衰退的鲁棒性 | 阿尔茨海默病患者的结构磁共振成像数据 | 计算机视觉 | 阿尔茨海默病 | 结构磁共振成像(sMRI) | CNN | 医学图像 | 多个ADNI队列的数据集 | NA | VGG19, AlexNet | 准确率 | NA |
| 86 | 2025-10-06 |
Prediction of central lymph node metastasis based on deep learning models for patients with clinically node-negative papillary thyroid carcinoma
2023-12, Asian journal of surgery
IF:3.5Q1
DOI:10.1016/j.asjsur.2023.08.130
PMID:37648544
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 87 | 2025-10-06 |
Multimodal imaging and deep learning in geographic atrophy secondary to age-related macular degeneration
2023-Dec, Acta ophthalmologica
IF:3.0Q1
DOI:10.1111/aos.15796
PMID:37933610
|
综述 | 本文全面综述了年龄相关性黄斑变性继发地图样萎缩的多模态成像基础、诊断分类流程及人工智能算法在影像数据分析中的前沿应用 | 系统整合多模态成像与深度学习技术,聚焦于地图样萎缩的自动诊断和预后评估 | NA | 探讨人工智能算法在地图样萎缩影像量化分析和临床决策支持中的应用 | 年龄相关性黄斑变性继发的地图样萎缩病变 | 医学影像分析 | 年龄相关性黄斑变性 | 多模态成像 | 深度学习 | 医学影像 | NA | NA | NA | NA | NA |
| 88 | 2025-09-12 |
RescueNet: A High Resolution UAV Semantic Segmentation Dataset for Natural Disaster Damage Assessment
2023-12-20, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-023-02799-4
PMID:38123582
|
研究论文 | 介绍了一个用于自然灾害损害评估的高分辨率无人机语义分割数据集RescueNet | 提供高分辨率灾后图像及所有类别的像素级标注,超越现有数据集的有限标注范围 | NA | 促进自然灾害后的全面场景理解,提升损害评估精度 | 飓风Michael后的灾后图像,包含建筑物、道路、水池、树木等多类别场景元素 | 计算机视觉 | NA | 无人机(UAV)图像采集,语义分割技术 | state-of-the-art segmentation models | 高分辨率图像 | 从多个受影响区域收集的灾后图像数据集 | NA | NA | NA | NA |
| 89 | 2025-09-12 |
Using green background for dermatological images to improve deep learning-based image classification
2023-12-13, Archives of dermatological research
IF:1.8Q3
DOI:10.1007/s00403-023-02734-y
PMID:38091097
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 90 | 2025-09-12 |
Deep learning downscaled high-resolution daily near surface meteorological datasets over East Asia
2023-12-12, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-023-02805-9
PMID:38086806
|
研究论文 | 使用U-Net深度学习模型对东亚地区气象数据进行降尺度处理,生成高分辨率数据集CLIMEA-BCUD | 结合19个CMIP6模型和MSWX数据集,首次应用偏差校正和U-Net降尺度方法生成0.1°高分辨率东亚气象数据集 | NA | 开发高分辨率气象数据集以促进气候变化和水文学等领域的研究 | 东亚地区的气象数据 | 机器学习 | NA | 偏差校正,UNet降尺度 | U-Net, CNN | 气象数据 | 基于19个CMIP6模型和MSWX数据集,覆盖1950-2100年期间 | NA | NA | NA | NA |
| 91 | 2025-09-12 |
A Drosophila heart optical coherence microscopy dataset for automatic video segmentation
2023-12-09, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-023-02802-y
PMID:38071220
|
研究论文 | 介绍一种基于LSTM卷积神经网络的果蝇心脏自动分割算法FlyNet 2.0+及其配套数据集 | 利用LSTM-CNN结合时间序列信息实现高质量自动分割,并提供包含213个视频的大型标注数据集 | NA | 开发自动分割算法以提升果蝇心脏光学相干显微镜视频的分析效率与可重复性 | 果蝇(Drosophila melanogaster)心脏 | 计算机视觉 | 心血管疾病 | 光学相干显微镜(OCM) | LSTM-CNN | 视频 | 213个果蝇心脏视频(相当于604,000张截面图像),涵盖所有发育阶段和多种搏动模式 | NA | NA | NA | NA |
| 92 | 2025-09-12 |
A news-based climate policy uncertainty index for China
2023-12-08, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-023-02817-5
PMID:38065994
|
研究论文 | 本研究首次构建了中国国家级、省级和城市级的气候政策不确定性指数(CCPU) | 首次使用深度学习算法MacBERT模型,基于新闻文本挖掘构建多层级气候政策不确定性指数 | NA | 量化评估中国气候政策不确定性及其社会经济影响 | 中国气候政策及相关新闻报道 | 自然语言处理 | NA | 文本挖掘,深度学习 | MacBERT | 文本 | 中国主要报纸发布的新闻 | NA | NA | NA | NA |
| 93 | 2025-09-12 |
A Chinese Face Dataset with Dynamic Expressions and Diverse Ages Synthesized by Deep Learning
2023-12-07, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-023-02701-2
PMID:38062057
|
研究论文 | 利用StyleGAN深度学习技术合成包含动态表情和多样年龄的中国面孔数据集SZU-EmoDage | 通过潜在向量插值生成连续动态表情,解决了现有数据集缺乏年龄多样性和动态表情的问题 | NA | 创建具有表情强度和年龄多样性的中国面孔数据集,用于心理学实验 | 合成中国面孔图像 | 计算机视觉 | NA | StyleGAN,深度学习 | GAN | 图像 | NA | NA | NA | NA | NA |
| 94 | 2025-10-06 |
Deep Learning from Phylogenies for Diversification Analyses
2023-12-30, Systematic biology
IF:6.1Q1
DOI:10.1093/sysbio/syad044
PMID:37556735
|
研究论文 | 本文提出一种基于深度学习的系统发育树多样化分析方法,用于推断物种多样化动态 | 将病原体系统动力学中的深度学习方法首次应用于多样化推断,并扩展至基于性状数据的状态依赖多样化模型 | 目前仅验证了时间恒定同质出生-死亡模型和二元状态物种形成与灭绝模型的准确性 | 开发一种通用且高效的多样化模型推断方法 | 物种系统发育树和性状数据 | 机器学习 | NA | 系统发育分析 | 深度神经网络 | 系统发育树数据, 性状数据 | NA | NA | NA | 准确性, 时间效率 | NA |
| 95 | 2025-10-06 |
Developing and deploying deep learning models in brain magnetic resonance imaging: A review
2023-12, NMR in biomedicine
IF:2.7Q1
DOI:10.1002/nbm.5014
PMID:37539775
|
综述 | 本文系统回顾了脑部磁共振成像中深度学习模型的开发与临床部署流程 | 整合了从数据收集到临床部署的全流程指南,并基于认证机构标准提供了可解释性机器学习实践框架 | 未涉及具体模型性能比较,主要聚焦方法论和部署挑战 | 促进脑部MRI深度学习模型在临床环境中的实际应用 | 脑部磁共振成像数据及深度学习模型 | 医学影像分析 | 神经系统疾病 | 磁共振成像 | 深度学习 | 医学影像 | NA | NA | NA | NA | NA |
| 96 | 2025-10-06 |
Deep learning based correction of RF field induced inhomogeneities for T2w prostate imaging at 7 T
2023-12, NMR in biomedicine
IF:2.7Q1
DOI:10.1002/nbm.5019
PMID:37622473
|
研究论文 | 提出基于深度学习的偏置场校正方法,用于改善7T磁场下T2加权前列腺图像的射频场不均匀性问题 | 首次将深度学习应用于7T超高场强下T2加权前列腺图像的偏置场校正,通过合成数据训练神经网络 | 偶尔在前列腺区域内观察到对比度变化,特别是t-Image网络较为明显 | 解决超高场强磁共振成像中的射频场不均匀性问题 | 7T磁场下的T2加权前列腺图像 | 医学影像处理 | 前列腺癌 | 磁共振成像,T2加权成像 | 神经网络 | 医学影像 | 合成训练数据集、7T志愿者和患者图像、3T患者图像四个测试集 | NA | t-Image神经网络, t-Biasf神经网络 | 结构相似性指数, Wasserstein距离, 均方根误差, GLCM均匀性, GLCM能量 | NA |
| 97 | 2025-10-06 |
Comprehensive assessment methods are key to progress in deep learning
2023-12-06, The Behavioral and brain sciences
DOI:10.1017/S0140525X23001668
PMID:38054334
|
评论 | 本文对Bowers等人关于深度神经网络评估方法和模型本身存在缺陷的观点表示认同,但提出了不同的改进方案 | 针对现有深度神经网络评估问题提出了与原文不同的解决方案路径 | NA | 探讨深度神经网络评估方法的改进方向 | 深度神经网络模型 | 机器学习 | NA | NA | 深度神经网络 | NA | NA | NA | NA | NA | NA |
| 98 | 2025-10-06 |
Thinking beyond the ventral stream: Comment on Bowers et al
2023-12-06, The Behavioral and brain sciences
DOI:10.1017/S0140525X23001723
PMID:38054346
|
评论 | 对Bowers等人研究的评论文章,探讨深度学习模型在视觉感知研究中的局限性及改进方向 | 提出不应完全抛弃深度学习,而应通过设计更符合生物视觉进化目标的刺激和任务来改进模型 | NA | 探讨如何改进深度学习模型以更好地模拟生物视觉系统 | 视觉感知的深度学习模型 | 计算机视觉 | NA | NA | 深度学习 | 视觉刺激 | NA | NA | NA | NA | NA |
| 99 | 2025-09-09 |
Deep learning in endoscopy: the importance of standardisation
2023-12, Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale
IF:2.1Q2
DOI:10.14639/0392-100X-N2580
PMID:37814976
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 100 | 2025-10-06 |
SIMPLEX: Multiple phase-cycled bSSFP quantitative magnetization transfer imaging with physic-guided simulation learning of neural network
2023-12-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2023.120449
PMID:37951485
|
研究论文 | 提出一种基于物理引导模拟学习的神经网络方法SIMPLEX,用于改进多相位循环bSSFP的定量磁化转移成像参数提取 | 利用MR信号模型生成训练样本,无需昂贵的数据标注,网络仅使用模拟数据训练即可直接应用于体内数据 | 方法仅通过模拟和体内数据验证,尚未在更大规模临床数据集中测试 | 改进多相位循环bSSFP定量磁化转移成像的参数拟合质量 | 定量磁化转移成像参数(交换率、池分数)以及T1、T2和ΔB图 | 医学影像分析 | NA | 定量磁化转移成像,多相位循环bSSFP序列 | 神经网络 | 磁共振成像数据 | 模拟数据和体内数据 | NA | NA | 均方误差,量化质量 | NA |