深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202312-202312] [清除筛选条件]
当前共找到 319 篇文献,本页显示第 101 - 120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
101 2025-10-06
Deep learning prediction of hospital readmissions for asthma and COPD
2023-Dec-13, Respiratory research IF:4.7Q1
研究论文 本研究使用电子健康记录数据和深度学习模型预测哮喘和COPD患者的再入院风险 比较了四种机器学习方法和一种深度学习方法在预测哮喘和COPD再入院方面的性能,发现多层感知器表现最佳 研究为观察性研究,时间跨度为2012-2017年,可能存在数据局限性 识别严重哮喘和COPD加重的电子健康记录特征,并评估机器学习模型预测再入院的性能 因哮喘和COPD加重住院的患者 机器学习 哮喘和慢性阻塞性肺疾病 电子健康记录数据分析 多层感知器, 机器学习模型 电子健康记录数据 5794名患者(哮喘1893人,COPD 3901人),其中2682名患者子集用于模型分析 NA 多层感知器 灵敏度, 特异性 NA
102 2025-10-06
Inferring Metabolic States from Single Cell Transcriptomic Data via Geometric Deep Learning
2023-Dec-07, bioRxiv : the preprint server for biology
研究论文 提出一种基于几何深度学习的GEFMAP方法,利用单细胞转录组数据预测代谢网络中的反应通量 首次利用几何深度学习从单细胞转录组数据推断代谢状态,通过代谢网络的天然图结构学习细胞生物学目标并估计质量平衡的相对通量率 代谢组化学异质性导致测量困难,单细胞分辨率代谢组学技术落后于其他多组学模态 从单细胞转录组数据推断细胞代谢状态 单细胞转录组数据和代谢网络 计算生物学, 生物信息学 NA scRNAseq, 几何深度学习 几何深度学习 基因表达数据, 转录组数据 NA NA GEFMAP NA NA
103 2025-10-06
A comparison of 18 F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study
2023-Dec-01, Nuclear medicine communications IF:1.3Q3
研究论文 比较基于18F-FDG PET的手工放射组学与深度学习在预测可切除肺腺癌区域淋巴结转移中的性能 首次系统比较手工放射组学与深度学习在不同代际PET扫描仪上的泛化性能 样本量较小,特别是数字PET队列仅17例患者 预测可切除肺腺癌患者的病理区域淋巴结转移状态 148例接受根治性手术的肺腺癌患者 医学影像分析 肺腺癌 18F-FDG PET成像 CNN PET医学影像 148例患者(模拟PET组131例,数字PET组17例) NA ResNet-50 AUC, 准确率, 特异性, 敏感性 NA
104 2025-10-06
A Longitudinal MRI-Based Artificial Intelligence System to Predict Pathological Complete Response After Neoadjuvant Therapy in Rectal Cancer: A Multicenter Validation Study
2023-12-01, Diseases of the colon and rectum
研究论文 开发并验证基于治疗前后配对MRI比较的深度学习模型DeepRP-RC,用于预测直肠癌新辅助治疗后病理完全缓解 首次开发基于纵向MRI比较的多任务深度学习模型,同时实现疗效预测和病灶分割,并在多中心数据集上进行验证 研究设计为回顾性研究,缺乏多民族数据 预测局部晚期直肠癌患者新辅助放化疗后的病理完全缓解 1201例接受新辅助放化疗的局部晚期直肠癌患者 医学影像分析 直肠癌 MRI影像分析 深度学习 MRI影像 1201例患者(训练集638例,内部和3个外部验证集) NA 多任务深度学习网络 AUC NA
105 2025-10-06
A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression
2023-12, Alzheimer's & dementia : the journal of the Alzheimer's Association
研究论文 开发了一种模拟深度学习模型,通过分析19号染色体上的SNP相互作用来预测阿尔茨海默病风险和疾病进展速度 使用新颖的模拟深度学习模型量化每个SNP及其上位效应对AD风险的贡献,并识别出影响AD进展的关键SNP 研究仅限于19号染色体上的SNP,未涵盖全基因组分析 识别影响阿尔茨海默病风险的遗传模式,用于风险预测和个性化治疗策略 阿尔茨海默病患者和对照个体的遗传数据 机器学习 阿尔茨海默病 基因分型,深度学习分析 深度学习 基因数据 来自ADNI和IGAP数据集的样本 NA 模拟深度学习模型 风险预测准确性,疾病进展预测能力 NA
106 2025-10-06
Deep learning, 3D ultrastructural analysis reveals quantitative differences in platelet and organelle packing in COVID-19/SARSCoV2 patient-derived platelets
2023-Dec, Platelets IF:2.5Q2
研究论文 本研究通过深度学习辅助的3D超微结构分析,揭示了COVID-19患者血小板及其细胞器包装密度的定量差异 首次结合聚焦离子束扫描电镜和深度学习方法,对COVID-19患者血小板进行3D超微结构定量分析 样本量有限(仅3名健康对照和3名重症COVID-19患者) 研究血小板形态及其细胞器对理解血小板过度活化和微凝血的诊断价值 人类血小板及其α颗粒和线粒体 数字病理 COVID-19 聚焦离子束扫描电镜(FIB-SEM) 深度学习 3D超微结构图像 约600个单个血小板和30000个细胞器(来自3名健康对照和3名COVID-19患者) NA NA NA NA
107 2025-10-06
Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods
2023-Dec, Journal of cancer research and clinical oncology IF:2.7Q3
系统综述 本系统综述分析了2010-2022年间使用磁共振成像和深度学习方法进行胶质瘤脑肿瘤无创分级的研究现状 系统梳理了深度学习在胶质瘤诊断研究中的应用现状,并指出胶质瘤分割研究比检测和分类研究更受关注 仅纳入了2010-2022年间的英文文献,可能遗漏其他重要研究 分析深度学习技术在胶质瘤脑肿瘤诊断研究中的应用现状 胶质瘤脑肿瘤 医学影像分析 脑肿瘤 磁共振成像 CNN 医学影像 77篇学术文章 NA ConvNets 分类准确率,Dice相似系数 NA
108 2025-10-06
Predicting cutaneous malignant melanoma patients' survival using deep learning: a retrospective cohort study
2023-Dec, Journal of cancer research and clinical oncology IF:2.7Q3
研究论文 本研究开发了一种基于深度学习的皮肤恶性黑色素瘤生存预测模型DeepCMM 首次将深度学习技术应用于皮肤恶性黑色素瘤患者的生存预测,并开发了可供临床医生使用的Windows软件 回顾性研究设计,数据来源于单一数据库 准确预测皮肤恶性黑色素瘤患者的生存预后以指导临床决策 皮肤恶性黑色素瘤患者 机器学习 皮肤癌 深度学习 深度学习生存模型 临床数据 来自SEER数据库的皮肤恶性黑色素瘤患者,按诊断时间分为训练队列(2010-2013)、验证队列(2014)和测试队列(2015) NA DeepCMM AUC Windows 64位软件
109 2025-10-06
Diagnostic accuracy of contrast-enhanced computed tomography in assessing cervical lymph node status in patients with oral squamous cell carcinoma
2023-Dec, Journal of cancer research and clinical oncology IF:2.7Q3
研究论文 评估增强CT在口腔鳞状细胞癌患者颈部淋巴结转移诊断中的准确性 首次将可疑淋巴结分为强化型、肿大型和融合型三类进行对比分析,并探索了与诊断可靠性相关的临床病理因素 回顾性研究设计,样本量有限(239例),缺乏外部验证 评估增强CT检测淋巴结转移的诊断准确性并探索相关影响因素 239例接受术前CT检查和根治性手术的原发性口腔鳞状细胞癌患者 医学影像诊断 口腔鳞状细胞癌 增强计算机断层扫描(CT) NA 医学影像数据 239例口腔鳞状细胞癌患者 NA NA 灵敏度, 特异度, 阳性预测值, 阴性预测值 NA
110 2025-10-06
Analysis of ultrasonographic images using a deep learning-based model as ancillary diagnostic tool for diagnosing gallbladder polyps
2023-12, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver IF:4.0Q1
研究论文 本研究开发基于深度学习的超声图像分析模型,作为胆囊息肉诊断的辅助工具 首次将深度学习模型应用于胆囊息肉的超声图像分类,并评估其对不同经验水平医生的辅助诊断效果 回顾性研究设计,样本量相对有限(263名患者),需进一步前瞻性验证 评估深度学习模型在鉴别肿瘤性胆囊息肉与非肿瘤性胆囊息肉中的效能 胆囊息肉患者的超声图像 计算机视觉 胆囊疾病 超声成像 深度学习 图像 263名患者的3,754张超声图像 NA NA 准确率, 敏感性, 特异性 NA
111 2025-10-06
Identification of gastric signet ring cell carcinoma based on endoscopic images using few-shot learning
2023-12, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver IF:4.0Q1
研究论文 本研究提出了一种基于小样本学习的胃印戒细胞癌内镜图像识别方法 采用双重预训练策略(ImageNet和食管内镜图像)结合小样本学习框架解决胃印戒细胞癌样本稀缺问题 每类新类别仅使用50个样本,样本量较小 开发基于内镜图像的胃印戒细胞癌计算机辅助诊断方法 胃良性溃疡、腺癌和印戒细胞癌的内镜图像 计算机视觉 胃癌 内镜成像 CNN 图像 每类50个样本(胃良性溃疡、腺癌和SRCC),共150个样本 TensorFlow/PyTorch(未明确指定) EfficientNetV2-S 准确率, 灵敏度, 召回率, 精确率, F1-score, 特异性, AUC NA
112 2025-10-06
CRPU-NET: a deep learning model based semantic segmentation for the detection of colorectal polyp in lower gastrointestinal tract
2023-12-27, Biomedical physics & engineering express IF:1.3Q3
研究论文 开发基于深度学习的CRPU-Net模型用于结直肠息肉语义分割检测 提出轻量级CRPU-Net架构,在结直肠息肉分割任务中性能优于现有先进模型 NA 开发结直肠息肉自动分割模型并进行性能比较分析 结肠镜检查图像中的结直肠息肉 计算机视觉 结直肠癌 结肠镜检查 CNN 图像 CVC-ColonDB和CVC-ClinicDB两个结肠镜图像数据集 NA CRPU-Net, VGG16, VGG19, U-Net, ResUnet++ 准确率, Jaccard系数, Dice系数 NA
113 2025-10-06
Secret learning for lung cancer diagnosis-a study with homomorphic encryption, texture analysis and deep learning
2023-12-08, Biomedical physics & engineering express IF:1.3Q3
研究论文 本研究提出一种结合同态加密、纹理分析和深度学习的隐私保护方法用于肺癌诊断 首次将同态加密技术应用于肺癌CT图像的纹理特征提取和深度学习分类,在保护患者隐私的同时实现高精度诊断 仅使用单一数据集进行验证,未在不同医疗机构数据上进行泛化性测试 开发隐私保护的肺癌自动诊断方法 肺部CT扫描图像 计算机视觉 肺癌 同态加密,纹理分析 深度学习 医学影像 包含正常组织、腺癌、大细胞癌和鳞状细胞癌的CT图像样本 NA NA 准确率 NA
114 2025-10-06
Large-Scale Information Retrieval and Correction of Noisy Pharmacogenomic Datasets through Residual Thresholded Deep Matrix Factorization
2023-Dec-08, bioRxiv : the preprint server for biology
研究论文 提出一种用于药物敏感性数据噪声校正和缺失值填补的深度学习框架RT-DMF 结合深度矩阵分解与迭代残差阈值化,能有效识别并保留具有治疗重要性的信号 仅使用单一药物敏感性数据矩阵作为输入,未整合其他分子特征数据 解决药物基因组学数据中的噪声和不一致性问题 癌症细胞系(CCLs)的药物敏感性数据 机器学习 癌症 高通量实验,多重分析方法 深度矩阵分解 药物敏感性矩阵数据 大规模癌症细胞系药物敏感性数据集 NA Residual Thresholded Deep Matrix Factorization (RT-DMF) 噪声校正效果,缺失值填补准确性 NA
115 2025-06-04
Artificial neural network and deep learning in Sjögren's disease: where we are and where we are going
2023-12, Clinical and experimental rheumatology IF:3.4Q2
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
116 2025-10-07
Structural and functional connectome relationships in early childhood
2023-12, Developmental cognitive neuroscience IF:4.6Q1
研究论文 本研究探索了幼儿期大脑结构与功能连接组的关系及其发展模式 首次在幼儿期纵向研究结构-功能耦合,并应用新型图卷积神经网络模型更好捕捉个体异质性 样本量相对有限,仅追踪到6岁儿童 探究儿童早期大脑结构连接与功能连接的关系及其发展规律 1-6岁儿童和成人对照组的脑连接组 神经科学, 机器学习 NA 脑成像技术 图卷积神经网络 脑结构连接和功能连接数据 360名儿童(1、2、4、6岁纵向扫描)和89名成人 NA 图卷积神经网络 功能连接预测精度 NA
117 2025-05-16
Protocol to investigate the neural basis for copulation posture of Drosophila using a closed-loop real-time optogenetic system
2023-12-15, STAR protocols IF:1.3Q4
研究论文 本文提出了一种利用闭环实时光遗传系统研究果蝇交配姿势神经基础的协议 使用深度学习分析实现高效的光遗传学操作,仅在交配期间调控神经活动 协议的具体执行细节需参考Yamanouchi等人的研究 探究果蝇交配姿势的神经基础 果蝇 神经科学 NA 光遗传学 深度学习 行为数据 NA NA NA NA NA
118 2025-10-07
Using DeepContact with Amira graphical user interface
2023-12-15, STAR protocols IF:1.3Q4
protocol 介绍如何在Amira软件中集成DeepContact深度学习模型,用于细胞器分割和膜接触位点量化 将DeepContact深度学习模型与Amira图形用户界面相结合,提供用户友好的膜接触位点分析工具 仅支持2D电子显微镜图像分析,具体使用细节需参考原始文献 开发膜接触位点的高通量量化方法 2D电子显微镜图像中的膜接触位点 digital pathology NA electron microscopy deep learning 2D electron microscopy images NA NA DeepContact NA NA
119 2025-10-07
Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques
2023-12-15, STAR protocols IF:1.3Q4
研究论文 提出DeepFundus协议,使用深度学习技术对眼底图像进行多维质量分级并为现场图像采集提供实时指导 开发了能够进行多维眼底图像质量分类并提供实时采集指导的深度学习系统 NA 解决医学人工智能研究中数据质量问题,提高眼底图像采集质量 眼底图像 计算机视觉 眼科疾病 深度学习 深度学习模型 图像 NA Python NA NA NA
120 2025-10-07
Label-free imaging of nuclear membrane for analysis of nuclear import of viral complexes
2023-12, Journal of virological methods IF:2.2Q3
研究论文 本研究开发了一种基于深度学习的方法,利用透射光显微镜实现核膜的无标记成像,用于分析HIV-1病毒复合物的核输入过程 首次使用深度神经网络模型通过透射光显微镜实现核膜的无标记可视化,避免了传统荧光标记的局限性 模型训练基于固定细胞数据,虽然已证明可适用于活细胞成像,但在原代细胞中的应用仍需进一步验证 研究HIV-1病毒复合物在非分裂细胞中的核输入机制 HIV-1病毒复合物、细胞核膜、核孔复合物 数字病理 HIV感染 透射光显微镜、荧光显微镜、单病毒追踪 深度神经网络 图像 未明确说明具体样本数量 未明确说明 未明确说明具体架构 预测准确性(通过与荧光标记真实值对比验证) NA
回到顶部