本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 101 | 2025-04-12 |
RApid Throughput Screening for Asymptomatic COVID-19 Infection With an Electrocardiogram: A Prospective Observational Study
2023-Dec, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2023.07.007
PMID:40206301
|
研究论文 | 评估神经网络使用便携设备获取的心电图(ECG)识别无症状SARS-CoV-2感染的能力 | 使用便携式、智能手机兼容的人工智能心电图(POC AI-ECG)设备进行无症状SARS-CoV-2感染的筛查 | POC AI-ECG算法在检测无症状SARS-CoV-2感染方面效果不佳,无法有效区分阳性与阴性参与者的心电图 | 评估人工智能心电图在检测无症状SARS-CoV-2感染中的准确性 | 2827名患者 | 数字病理学 | COVID-19 | 人工智能心电图(AI-ECG) | 深度学习模型 | 心电图数据 | 2827名患者(48%女性,79%白人,7%有既往COVID-19感染史) | NA | NA | NA | NA |
| 102 | 2025-04-12 |
Deep Learning for Computed Tomography Assessment of Hepatic Fibrosis and Cirrhosis: A Systematic Review
2023-Dec, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2023.08.008
PMID:40206310
|
系统综述 | 本文系统综述了深度学习在计算机断层扫描评估肝纤维化和肝硬化中的应用 | 首次系统评估深度学习算法在CT图像分析肝纤维化和肝硬化诊断中的准确性 | 研究队列和方法学存在异质性,限制了这些研究的普适性 | 评估深度学习算法在肝纤维化和肝硬化CT诊断中的准确性 | 计算机断层扫描(CT)图像 | 数字病理 | 肝纤维化和肝硬化 | 深度学习 | 图像分类算法和图像分割算法 | CT图像 | 6项符合纳入标准的研究(3877项初步筛选研究) | NA | NA | NA | NA |
| 103 | 2024-08-07 |
Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine
2023-12-01, Kidney360
IF:3.2Q1
DOI:10.34067/KID.0000000000000299
PMID:37966063
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 104 | 2025-10-07 |
Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay
2023-12, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202300617
PMID:37104829
|
研究论文 | 开发了一种基于深度学习的纸基荧光垂直流动检测多路复用即时诊断传感器 | 结合纸基荧光垂直流动检测与神经网络推断实现多路复用即时诊断 | 仅在46个测试卡盒上验证,样本规模有限 | 开发用于急性心脏损伤诊断的即时检测平台 | 人血清样本中的三种心脏生物标志物 | 医学诊断 | 心血管疾病 | 纸基荧光垂直流动检测 | 神经网络 | 荧光图像 | 46个独立激活的检测卡盒,每个患者使用50μL血清样本 | NA | NA | 检测限,线性度,变异系数 | 低成本移动阅读器 |
| 105 | 2025-10-07 |
Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning
2023-Dec-01, Journal of cancer research and therapeutics
IF:1.4Q4
DOI:10.4103/jcrt.jcrt_325_23
PMID:38156926
|
研究论文 | 本研究评估了深度迁移学习和微调方法在乳腺动态对比增强磁共振成像中区分良恶性病变的能力 | 比较了三种深度学习模型在乳腺DCE-MRI中的性能,并开发了三种微调策略进一步提升模型性能 | 研究样本量有限,仅使用50个额外病变进行验证集测试 | 评估深度学习模型在乳腺DCE-MRI中区分良恶性病变的诊断效能 | 乳腺动态对比增强磁共振成像中的良恶性病变 | 计算机视觉 | 乳腺癌 | 动态对比增强磁共振成像 | CNN | 医学影像 | 训练集未明确数量,验证集包含50个病变 | NA | VGG19, ResNet50, DenseNet201 | 准确率, 精确率, 召回率, F1分数, AUC, Kappa系数 | NA |
| 106 | 2025-10-07 |
Exploring the application of deep learning methods for polygenic risk score estimation
2023-Dec-15, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.12.14.23299972
PMID:38168416
|
研究论文 | 本研究探索深度学习在多基因风险评分估计中的应用 | 使用单一深度学习模型生成多个多基因风险评分,并证明在缺失SNP数据情况下模型性能优于传统方法 | 输入信息是进一步改进性能的限制因素,需要额外输入数据才能获得更大提升 | 探索机器学习如何改进多基因风险评分的生成 | 英国生物银行数据中的多基因风险评分 | 机器学习 | NA | 基因分型 | MLP | 基因数据 | 英国生物银行数据集 | NA | MLP | AUC | NA |
| 107 | 2025-10-07 |
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
2023-12, Health services research
IF:3.1Q1
DOI:10.1111/1475-6773.14210
PMID:37534741
|
研究论文 | 开发基于自然语言处理的算法从电子健康记录中识别阿尔茨海默病及相关痴呆患者的社会健康决定因素 | 首次针对ADRD患者开发专门识别七类社会健康决定因素的NLP算法,并比较了基于规则方法与深度学习方法的效果 | 住房和药物不安全两个领域的识别性能相对较差,仅使用单一医疗中心的231名患者数据 | 从非结构化电子健康记录中自动识别ADRD患者的社会健康决定因素 | 阿尔茨海默病及相关痴呆患者 | 自然语言处理 | 阿尔茨海默病及相关痴呆 | 自然语言处理 | 基于规则的NLP算法,深度学习,正则化逻辑回归 | 文本 | 1000份医疗记录(来自231名ADRD患者) | NA | NA | 准确率,灵敏度,特异性,F1分数,AUC | NA |
| 108 | 2025-03-02 |
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28680
PMID:36939778
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 109 | 2025-10-07 |
DeepOmicsAE: Representing Signaling Modules in Alzheimer's Disease with Deep Learning Analysis of Proteomics, Metabolomics, and Clinical Data
2023-12-15, Journal of visualized experiments : JoVE
DOI:10.3791/65910
PMID:38163278
|
研究论文 | 提出DeepOmicsAE工作流程,利用自编码器分析多组学数据以识别阿尔茨海默病的信号模块 | 开发了针对多组学数据优化的自编码器工作流程,提供参数优化方法,并能识别与临床特征互作的分子信号模块 | 样本量相对较小(142人),仅使用死后脑样本数据 | 开发多组学数据分析方法以研究阿尔茨海默病的分子机制 | 健康个体和阿尔茨海默病患者的死后脑样本 | 机器学习 | 阿尔茨海默病 | 蛋白质组学,代谢组学,临床数据分析 | 自编码器 | 蛋白质组数据,代谢组数据,临床数据 | 142人(包括健康对照和阿尔茨海默病患者) | NA | 自编码器 | NA | NA |
| 110 | 2025-10-07 |
Artificial Intelligence-based System for Detecting Attention Levels in Students
2023-12-15, Journal of visualized experiments : JoVE
DOI:10.3791/65931
PMID:38163270
|
研究论文 | 提出基于人工智能的系统,通过分析学生面部表情、视线方向、身体姿态和生物特征数据来检测课堂注意力水平 | 整合多种数据源(面部表情、视线方向、身体姿态和生物特征)构建注意力检测系统 | 需要创建标记数据集,整合不同类型数据存在挑战 | 开发AI系统自动识别学生注意力水平,帮助教师优化教学过程 | 课堂学生 | 机器学习 | NA | 深度学习 | 深度学习模型 | 图像数据, 传感器数据, 生物特征数据 | NA | NA | NA | NA | NA |
| 111 | 2025-10-07 |
Spatial and Compositional Biomarkers in Tumor Microenvironment Predicts Clinical Outcomes in Triple-Negative Breast Cancer
2023-Dec-20, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.18.572234
PMID:38187696
|
研究论文 | 通过单细胞分辨率成像质谱数据分析三阴性乳腺癌肿瘤微环境的生物标志物与临床预后关系 | 首次在TNBC中系统识别10个复发性细胞邻域,并发现细胞间邻域相互作用与生存改善相关 | 样本量相对有限(58例TNBC患者标本),深度学习模型预测准确度有待提升(平均AUC=0.71) | 探索三阴性乳腺癌肿瘤微环境特征与临床结果的关系 | 三阴性乳腺癌患者肿瘤组织标本 | 数字病理学 | 三阴性乳腺癌 | 成像质谱细胞术 | 深度学习模型 | 单细胞分辨率空间图像数据 | 58例TNBC患者标本,另包含NeoTRIP临床试验独立队列 | NA | NA | AUC | NA |
| 112 | 2025-02-21 |
Deep Learning for Automated Measurement of Total Cardiac Volume for Heart Transplantation Size Matching
2023-Dec-28, Research square
DOI:10.21203/rs.3.rs-3788726/v1
PMID:38234758
|
研究论文 | 本研究旨在通过深度学习技术自动测量心脏总体积(TCV),以促进心脏移植中的尺寸匹配 | 首次使用3D卷积神经网络(3D-CNN)自动计算TCV,提高了测量的准确性和效率 | 模型在移植心脏上的准确性略低于正常心脏,且样本量相对较小 | 开发一种快速且准确的TCV测量方法,以促进心脏移植中的尺寸匹配 | 0-30岁受试者的CT扫描图像 | 计算机视觉 | 心血管疾病 | CT扫描 | 3D-CNN(结合Dense-Net和ResNet架构) | 图像 | 270名受试者用于训练,44名受试者用于验证(其中36名正常,8名心脏病患者) | NA | NA | NA | NA |
| 113 | 2025-02-21 |
Robust Epileptic Seizure Detection Using Long Short-Term Memory and Feature Fusion of Compressed Time-Frequency EEG Images
2023-Dec-02, Sensors (Basel, Switzerland)
DOI:10.3390/s23239572
PMID:38067944
|
研究论文 | 本文提出了一种结合时间频率域特征和EEG信号统计属性的新型模型,用于癫痫发作检测 | 创新点在于将时间频率域特征与EEG信号的统计属性(如均值、中位数和方差)融合,并通过自编码器处理压缩的时间频率图像,使用LSTM网络进行优化 | 模型在复杂现实环境中的鲁棒性和精确性可能受到限制 | 提高癫痫发作检测的准确性和及时性 | 癫痫患者的EEG信号 | 机器学习 | 癫痫 | 自编码器 | LSTM | EEG信号图像 | Bonn癫痫数据集 | NA | NA | NA | NA |
| 114 | 2025-02-21 |
A Novel Classification Model Using Optimal Long Short-Term Memory for Classification of COVID-19 from CT Images
2023-12, Journal of digital imaging
IF:2.9Q2
DOI:10.1007/s10278-023-00852-7
PMID:37491543
|
研究论文 | 本文提出了一种基于鹈鹕优化算法的长短期记忆网络(POA-LSTM)方法,用于从CT图像中分类COVID-19 | 使用POA-LSTM模型进行COVID-19分类,结合了nnU-Net进行ROI分割和HRNet进行特征提取,提高了分类性能 | 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 | 开发一种自动检测COVID-19的深度学习模型,以提高诊断准确性 | COVID-19患者的CT扫描图像 | 计算机视觉 | COVID-19 | 深度学习 | LSTM, nnU-Net, HRNet | CT图像 | NA | NA | NA | NA | NA |
| 115 | 2025-02-07 |
Graph Neural Networks in Cancer and Oncology Research: Emerging and Future Trends
2023-Dec-15, Cancers
IF:4.5Q1
DOI:10.3390/cancers15245858
PMID:38136405
|
综述 | 本文综述了图神经网络(GNNs)在癌症和肿瘤学研究中的应用,并探讨了未来的研究趋势 | 本文首次系统性地总结了2020年以来GNN在癌症和肿瘤学研究中的应用,并提出了未来研究的方向 | 本文主要基于现有文献进行综述,未涉及具体的实验验证 | 探讨图神经网络在癌症和肿瘤学研究中的应用及其未来趋势 | 癌症和肿瘤学研究中的多模态图数据 | 机器学习 | 癌症 | 图神经网络(GNNs) | GNN | 图数据(分子结构、空间分辨成像、数字病理学、生物网络、知识图谱等) | NA | NA | NA | NA | NA |
| 116 | 2025-10-07 |
Deep Learning Models for Predicting Left Heart Abnormalities From Single-Lead Electrocardiogram for the Development of Wearable Devices
2023-12-25, Circulation journal : official journal of the Japanese Circulation Society
IF:3.1Q2
DOI:10.1253/circj.CJ-23-0216
PMID:37967949
|
研究论文 | 开发基于单导联心电图的深度学习模型用于预测左心异常 | 首次使用单导联(Lead I)心电图数据开发能够检测多种左心异常的深度学习模型,并在多中心数据集上验证其性能优于或等同于心脏病专家对12导联心电图的判读 | 研究仅基于特定医疗设施的数据,模型在更广泛人群中的泛化能力需要进一步验证 | 开发适用于可穿戴设备的左心异常检测算法 | 左心异常患者的心电图数据 | 机器学习 | 心血管疾病 | 心电图 | 深度学习 | 心电图信号 | 229,439组心电图和超声心动图配对数据,来自8个医疗设施 | NA | NA | AUC, 准确率 | NA |
| 117 | 2025-10-07 |
Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures
2023-Dec-30, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.12.29.23300642
PMID:38234857
|
研究论文 | 通过深度学习识别大脑衰老的五个主要维度,并分析其与临床、生活方式和遗传因素的关联 | 首次使用Surreal-GAN深度表征学习方法在大规模多样化人群中识别出五种主要的神经退行性变模式 | 研究基于横断面数据,需要纵向研究验证预测价值 | 阐明大脑衰老的异质性并开发基于MRI的精准诊断方法 | 来自11项研究的49,482名个体的大脑MRI数据 | 医学影像分析 | 神经退行性疾病 | MRI, 深度学习 | GAN | 医学影像 | 49,482名个体 | NA | Surreal-GAN | 关联分析, 预测价值评估 | NA |
| 118 | 2025-10-07 |
Deep Learning-based Diagnosis and Localization of Pneumothorax on Portable Supine Chest X-ray in Intensive and Emergency Medicine: A Retrospective Study
2023-Dec-04, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-023-02023-1
PMID:38048012
|
研究论文 | 开发两种基于深度学习的系统,用于在便携式仰卧位胸部X光片上诊断和定位气胸 | 首次针对便携式仰卧位胸部X光片开发专门的气胸诊断和定位系统,并比较了基于检测和基于分割的两种不同方法 | 性能随气胸尺寸减小而下降,研究为回顾性设计 | 开发自动诊断和定位气胸的深度学习系统 | 便携式仰卧位胸部X光片 | 计算机视觉 | 气胸 | 胸部X光成像 | CNN, Transformer | 医学图像 | 训练集1571张图像,测试集1071张图像 | NA | EfficientNet-B2, DenseNet-121, Inception-v3, Deformable DETR, TOOD, VFNet, UNet | AUC, Dice系数 | NA |
| 119 | 2025-01-07 |
Ultrafast Cardiac Imaging Using Deep Learning for Speckle-Tracking Echocardiography
2023-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2023.3326377
PMID:37862280
|
研究论文 | 本文探讨了使用深度学习进行超快速心脏成像的方法,特别是针对斑点追踪超声心动图 | 本文创新性地将复杂加权卷积神经网络(CNN)用于图像重建,并结合先进的斑点追踪方法,评估了在保持心脏运动追踪能力的同时实现高质量图像重建的可行性 | 虽然本文在模拟和实验数据上展示了良好的性能,但在实际临床环境中的应用仍需进一步验证 | 研究目的是开发一种能够在超快速超声成像中同时实现高质量图像重建和心脏运动追踪的深度学习方法 | 心脏成像,特别是斑点追踪超声心动图 | 计算机视觉 | 心血管疾病 | 深度学习,斑点追踪超声心动图 | CNN | 图像 | 模拟数据、体外实验数据(旋转盘模型)和体内数据集 | NA | NA | NA | NA |
| 120 | 2025-01-07 |
Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging
2023-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2023.3329119
PMID:37910419
|
综述 | 本文综述了深度学习在光声和超声(PAUS)成像中的应用背景和现状 | 探讨了深度学习如何克服当前PAUS成像系统的技术限制,并识别了将PAUS技术稳健转化为临床应用的挑战和机遇 | 使用传统有限视角和带宽传感器无法提供高质量的光声源图,尤其是血管结构 | 总结深度学习在PAUS成像中的应用,并探讨其临床转化的潜力 | 光声和超声(PAUS)成像技术 | 医学影像 | NA | 深度学习 | NA | 图像 | NA | NA | NA | NA | NA |