本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 121 | 2025-10-07 |
Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data
2023-Dec-18, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.15.571938
PMID:38187601
|
研究论文 | 本研究评估了六种脑电图数据增强方法在基于深度学习的重度抑郁症诊断中的效果 | 引入了重复训练集作为新基线以消除数据量偏差,并首次系统评估多种EEG数据增强方法在抑郁症诊断中的效用 | 研究结果仅限于特定数据集和模型,可能需要进一步验证 | 评估脑电图数据增强方法对深度学习模型在抑郁症诊断中性能的影响 | 重度抑郁症患者的原始脑电图数据 | 机器学习 | 抑郁症 | 脑电图(EEG) | 深度学习模型 | 原始脑电图信号 | NA | NA | NA | 模型性能指标 | NA |
| 122 | 2025-10-07 |
Predicting trabecular arrangement in the proximal femur: An artificial neural network approach for varied geometries and load cases
2023-12, Journal of biomechanics
IF:2.4Q3
DOI:10.1016/j.jbiomech.2023.111860
PMID:37948877
|
研究论文 | 使用前馈神经网络预测股骨近端小梁排列,通过几何和载荷参数快速计算表观密度 | 将神经网络应用于骨重塑现象建模,相比有限元方法显著减少计算时间 | 需要获取不同数据集才能将结果扩展到其他结构 | 开发快速准确的骨小梁分布预测方法 | 股骨近端的骨密度分布 | 机器学习 | 骨科疾病 | 有限元分析,神经网络建模 | 前馈神经网络 | 密度分布数据集 | 包含多种几何形状和载荷情况的样本 | NA | 前馈神经网络 | 计算时间比较 | NA |
| 123 | 2025-10-07 |
Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
2023-12-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43749-3
PMID:38092727
|
研究论文 | 本研究利用深度学习对组合性肝细胞-胆管癌进行表型重分类 | 首次使用深度学习模型对cHCC-CCA肿瘤进行重新分类,并将预测结果与临床结局、基因改变和空间基因表达谱相关联 | 研究针对罕见双表型癌症,样本量相对有限 | 改善组合性肝细胞-胆管癌的诊断分类和治疗决策 | 405例cHCC-CCA患者及其肿瘤样本 | 数字病理学 | 肝癌 | 深度学习,原位空间基因表达分析 | 深度学习模型 | 病理图像,基因表达数据 | 405例cHCC-CCA患者 | NA | NA | 诊断准确性 | NA |
| 124 | 2025-10-07 |
Automating General Movements Assessment with quantitative deep learning to facilitate early screening of cerebral palsy
2023-12-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-44141-x
PMID:38097602
|
研究论文 | 开发基于深度学习的运动评估模型,用于自动化评估婴儿全身运动以早期筛查脑瘫 | 首次将深度学习与婴儿视频特征结合实现全身运动评估的自动化,并提出定量GMA方法 | 需要专业视频数据且依赖专家标注进行训练 | 开发自动化工具促进脑瘫早期筛查 | 婴儿全身运动视频数据 | 计算机视觉 | 脑瘫 | 视频分析 | 深度学习 | 视频 | 未明确说明 | NA | NA | AUC | NA |
| 125 | 2025-10-07 |
Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology
2023-12-13, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43917-5
PMID:38086839
|
研究论文 | 提出单细胞空间代谢组学框架scSpaMet,实现人类组织中单个免疫细胞和癌细胞的蛋白质-代谢物联合分析 | 首次将非靶向空间代谢组学与靶向多重蛋白质成像整合到同一流程中,实现单细胞水平的空间代谢-蛋白质联合分析 | 仅使用男性人类组织样本,样本类型和数量有限 | 开发用于组织系统生物学的单细胞空间代谢组学分析工具 | 人类肺癌、扁桃体和子宫内膜组织中的单个免疫细胞和癌细胞 | 数字病理学 | 肺癌 | 空间代谢组学, 多重蛋白质成像 | 深度学习 | 空间代谢组数据, 蛋白质成像数据 | 肺癌组织19507个单细胞, 扁桃体组织31156个单细胞, 子宫内膜组织8215个单细胞 | NA | 联合嵌入模型 | NA | NA |
| 126 | 2025-10-07 |
Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43172-8
PMID:38081823
|
研究论文 | 开发基于细胞空间组织的图卷积网络Ceograph,从病理图像中识别与临床结果相关的细胞空间组织特征 | 首次提出基于细胞空间组织的图卷积网络方法,能够评估个体空间相互作用并识别关键的临床相关特征 | 方法在特定疾病类型中验证,需要进一步在其他疾病和更大样本中验证通用性 | 开发能够从组织图像中识别临床相关细胞空间组织特征的深度学习方法 | 口腔潜在恶性疾病患者和肺癌患者的组织病理图像 | 数字病理 | 口腔癌,肺癌 | 组织成像技术 | 图卷积网络 | 病理图像 | NA | NA | Ceograph | 临床结果预测准确性 | NA |
| 127 | 2025-10-07 |
DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43909-5
PMID:38081814
|
研究论文 | 开发基于深度学习的保留时间对齐工具DeepRTAlign,用于大规模队列液相色谱-质谱数据分析 | 能够同时处理单调和非单调保留时间偏移,相比现有方法具有更好的性能表现 | NA | 解决大规模队列LC-MS研究中保留时间对齐的瓶颈问题 | 蛋白质组学和代谢组学数据 | 机器学习 | 肝细胞癌 | 液相色谱-质谱联用技术 | 深度学习 | 质谱数据 | 多个真实世界和模拟数据集 | NA | NA | 识别灵敏度,定量准确性 | NA |
| 128 | 2025-10-07 |
The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers
2023-Dec, Psychological methods
IF:7.6Q1
DOI:10.1037/met0000542
PMID:37126041
|
研究论文 | 介绍了一个用于分析和可视化人类语言的R软件包,该软件包整合了自然语言处理和Transformer技术 | 将最先进的自然语言处理和深度学习技术打包成心理学研究者易于使用的工具,专门针对人类层面分析优化 | NA | 为心理学和社会科学研究人员提供易于使用的文本分析工具 | 人类语言文本数据 | 自然语言处理 | NA | 自然语言处理,深度学习 | Transformer | 文本 | NA | R | Transformer | NA | NA |
| 129 | 2025-10-07 |
From the diagnosis of infectious keratitis to discriminating fungal subtypes; a deep learning-based study
2023-12-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-49635-8
PMID:38097753
|
研究论文 | 本研究开发基于深度学习的模型用于传染性角膜炎诊断及其真菌亚型区分 | 首次构建可同时实现传染性角膜炎诊断、细菌与真菌角膜炎区分、以及真菌丝状与酵母亚型鉴别的多任务深度学习系统 | 模型3对真菌亚型区分的准确率相对较低(77.5%),可能存在分类性能提升空间 | 通过人工智能技术改进传染性角膜炎的早期诊断和分类 | 传染性角膜炎患者及其裂隙灯照片 | 计算机视觉 | 眼科感染疾病 | 裂隙灯成像 | 深度学习模型 | 图像 | 977名患者的9329张裂隙灯照片 | NA | NA | 准确率 | NA |
| 130 | 2025-04-24 |
Geneformer: a deep learning model for exploring gene networks
2023-12, Science China. Life sciences
DOI:10.1007/s11427-023-2431-x
PMID:37672186
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 131 | 2025-10-07 |
De novo design of diverse small molecule binders and sensors using Shape Complementary Pseudocycles
2023-Dec-21, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.20.572602
PMID:38187589
|
研究论文 | 提出一种结合深度学习和能量优化的方法,设计能够高亲和力结合并传感小分子的蛋白质 | 首次开发出能够设计结合极性柔性小分子(如甲氨蝶呤和甲状腺素)的高形状互补性结合蛋白,并实现直接从计算机设计到纳米级亲和力的突破 | 方法主要针对小分子设计,对于更大或更复杂分子的适用性尚未验证 | 开发通用方法设计能够结合和传感任意小分子的蛋白质 | 小分子结合蛋白和传感器 | 机器学习 | NA | 深度学习,能量优化,X射线晶体学 | 深度学习模型 | 分子结构数据 | 四种不同小分子(包括甲氨蝶呤和甲状腺素) | NA | NA | 结合亲和力(纳摩尔级),晶体结构相似度 | NA |
| 132 | 2025-10-07 |
Form follows function: Nuclear morphology as a quantifiable predictor of cellular senescence
2023-12, Aging cell
IF:8.0Q1
DOI:10.1111/acel.14012
PMID:37845808
|
研究论文 | 本研究探讨核形态作为细胞衰老量化预测指标的有效性 | 首次系统证实核形态可作为衰老的预测性生物标志物,并揭示细胞核在驱动衰老表型中的主动作用 | 未明确说明研究涉及的细胞类型和物种的具体数量 | 验证核形态特征对细胞衰老状态的预测能力 | 体外和体内的多种细胞类型和物种 | 数字病理学 | 老年性疾病 | 定量成像分析 | 深度学习算法 | 图像 | NA | NA | NA | 准确率 | NA |
| 133 | 2025-04-12 |
RApid Throughput Screening for Asymptomatic COVID-19 Infection With an Electrocardiogram: A Prospective Observational Study
2023-Dec, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2023.07.007
PMID:40206301
|
研究论文 | 评估神经网络使用便携设备获取的心电图(ECG)识别无症状SARS-CoV-2感染的能力 | 使用便携式、智能手机兼容的人工智能心电图(POC AI-ECG)设备进行无症状SARS-CoV-2感染的筛查 | POC AI-ECG算法在检测无症状SARS-CoV-2感染方面效果不佳,无法有效区分阳性与阴性参与者的心电图 | 评估人工智能心电图在检测无症状SARS-CoV-2感染中的准确性 | 2827名患者 | 数字病理学 | COVID-19 | 人工智能心电图(AI-ECG) | 深度学习模型 | 心电图数据 | 2827名患者(48%女性,79%白人,7%有既往COVID-19感染史) | NA | NA | NA | NA |
| 134 | 2025-04-12 |
Deep Learning for Computed Tomography Assessment of Hepatic Fibrosis and Cirrhosis: A Systematic Review
2023-Dec, Mayo Clinic proceedings. Digital health
DOI:10.1016/j.mcpdig.2023.08.008
PMID:40206310
|
系统综述 | 本文系统综述了深度学习在计算机断层扫描评估肝纤维化和肝硬化中的应用 | 首次系统评估深度学习算法在CT图像分析肝纤维化和肝硬化诊断中的准确性 | 研究队列和方法学存在异质性,限制了这些研究的普适性 | 评估深度学习算法在肝纤维化和肝硬化CT诊断中的准确性 | 计算机断层扫描(CT)图像 | 数字病理 | 肝纤维化和肝硬化 | 深度学习 | 图像分类算法和图像分割算法 | CT图像 | 6项符合纳入标准的研究(3877项初步筛选研究) | NA | NA | NA | NA |
| 135 | 2024-08-07 |
Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine
2023-12-01, Kidney360
IF:3.2Q1
DOI:10.34067/KID.0000000000000299
PMID:37966063
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 136 | 2025-10-07 |
Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay
2023-12, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202300617
PMID:37104829
|
研究论文 | 开发了一种基于深度学习的纸基荧光垂直流动检测多路复用即时诊断传感器 | 结合纸基荧光垂直流动检测与神经网络推断实现多路复用即时诊断 | 仅在46个测试卡盒上验证,样本规模有限 | 开发用于急性心脏损伤诊断的即时检测平台 | 人血清样本中的三种心脏生物标志物 | 医学诊断 | 心血管疾病 | 纸基荧光垂直流动检测 | 神经网络 | 荧光图像 | 46个独立激活的检测卡盒,每个患者使用50μL血清样本 | NA | NA | 检测限,线性度,变异系数 | 低成本移动阅读器 |
| 137 | 2025-10-07 |
Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning
2023-Dec-01, Journal of cancer research and therapeutics
IF:1.4Q4
DOI:10.4103/jcrt.jcrt_325_23
PMID:38156926
|
研究论文 | 本研究评估了深度迁移学习和微调方法在乳腺动态对比增强磁共振成像中区分良恶性病变的能力 | 比较了三种深度学习模型在乳腺DCE-MRI中的性能,并开发了三种微调策略进一步提升模型性能 | 研究样本量有限,仅使用50个额外病变进行验证集测试 | 评估深度学习模型在乳腺DCE-MRI中区分良恶性病变的诊断效能 | 乳腺动态对比增强磁共振成像中的良恶性病变 | 计算机视觉 | 乳腺癌 | 动态对比增强磁共振成像 | CNN | 医学影像 | 训练集未明确数量,验证集包含50个病变 | NA | VGG19, ResNet50, DenseNet201 | 准确率, 精确率, 召回率, F1分数, AUC, Kappa系数 | NA |
| 138 | 2025-10-07 |
Exploring the application of deep learning methods for polygenic risk score estimation
2023-Dec-15, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.12.14.23299972
PMID:38168416
|
研究论文 | 本研究探索深度学习在多基因风险评分估计中的应用 | 使用单一深度学习模型生成多个多基因风险评分,并证明在缺失SNP数据情况下模型性能优于传统方法 | 输入信息是进一步改进性能的限制因素,需要额外输入数据才能获得更大提升 | 探索机器学习如何改进多基因风险评分的生成 | 英国生物银行数据中的多基因风险评分 | 机器学习 | NA | 基因分型 | MLP | 基因数据 | 英国生物银行数据集 | NA | MLP | AUC | NA |
| 139 | 2025-10-07 |
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
2023-12, Health services research
IF:3.1Q1
DOI:10.1111/1475-6773.14210
PMID:37534741
|
研究论文 | 开发基于自然语言处理的算法从电子健康记录中识别阿尔茨海默病及相关痴呆患者的社会健康决定因素 | 首次针对ADRD患者开发专门识别七类社会健康决定因素的NLP算法,并比较了基于规则方法与深度学习方法的效果 | 住房和药物不安全两个领域的识别性能相对较差,仅使用单一医疗中心的231名患者数据 | 从非结构化电子健康记录中自动识别ADRD患者的社会健康决定因素 | 阿尔茨海默病及相关痴呆患者 | 自然语言处理 | 阿尔茨海默病及相关痴呆 | 自然语言处理 | 基于规则的NLP算法,深度学习,正则化逻辑回归 | 文本 | 1000份医疗记录(来自231名ADRD患者) | NA | NA | 准确率,灵敏度,特异性,F1分数,AUC | NA |
| 140 | 2025-03-02 |
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28680
PMID:36939778
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |