深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202312-202312] [清除筛选条件]
当前共找到 276 篇文献,本页显示第 121 - 140 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
121 2024-12-13
Artificial Intelligence and Machine Learning in Cancer Related Pain: A Systematic Review
2023-Dec-08, medRxiv : the preprint server for health sciences
综述 本文系统回顾了人工智能/机器学习(AI/ML)在癌症相关疼痛预测和管理决策中的应用 本文展示了多种新型AI/ML工具在癌症疼痛分类、风险分层和管理决策中的潜力 大多数研究缺乏外部验证和临床应用,模型校准报告不足 探索AI/ML在癌症疼痛相关结果预测和疼痛管理决策支持中的应用 癌症患者的疼痛管理 机器学习 癌症 NA 随机森林模型、Lasso模型、支持向量机 NA 44项研究,涵盖2006-2023年
122 2024-12-12
Prognosis Forecast of Re-Irradiation for Recurrent Nasopharyngeal Carcinoma Based on Deep Learning Multi-Modal Information Fusion
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究利用深度学习多模态信息融合技术,预测复发性鼻咽癌再放疗后的鼻咽坏死情况 提出了一种基于多模态信息融合的深度学习方法,通过监督分类损失和自监督重建损失的结合,有效融合了多序列核磁共振成像和计划剂量的信息 未提及具体的研究局限性 通过预测鼻咽坏死情况,为临床决策提供支持,减少再放疗引起的并发症 复发性鼻咽癌患者再放疗后的鼻咽坏死情况 机器学习 鼻咽癌 深度学习 NA 图像 多中心数据集
123 2024-12-12
Self-Supervised Triplet Contrastive Learning for Classifying Endometrial Histopathological Images
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种新的自监督三重对比学习模型,用于分类子宫内膜组织病理学图像 本文创新性地引入了随机马赛克掩码(RMM)模块和瓶颈Transformer(BoT)模型,以增强模型的泛化能力和全局信息学习能力 本文未详细讨论模型在不同数据分布下的泛化能力以及对标注数据依赖的具体程度 开发一种能够有效分类子宫内膜组织病理学图像的自监督学习模型,以辅助病理学家进行早期子宫内膜癌或癌前病变的诊断 子宫内膜组织病理学图像 数字病理学 子宫内膜癌 自监督学习 三重对比学习模型 图像 公共数据集和内部数据集,分别用于四分类和三分类任务
124 2024-12-12
Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于多尺度卷积神经网络和图神经网络的融合协议CGraphDTA,用于预测药物-靶点结合亲和力 CGraphDTA是首个将靶点序列和结构作为输入的模型,利用多尺度卷积神经网络从序列中提取特征,图神经网络从分子结构中提取图表示 NA 加速药物发现 药物-靶点结合亲和力的预测 机器学习 NA 多尺度卷积神经网络,图神经网络 CNN,GNN 序列,结构 NA
125 2024-12-12
MFD-Net: Modality Fusion Diffractive Network for Segmentation of Multimodal Brain Tumor Image
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种用于多模态脑肿瘤图像分割的模态融合衍射网络(MFD-Net) 设计了基于夫琅禾费单缝衍射原理的衍射块,强调邻近的高置信度特征点并抑制低质量或孤立的特征点,增强了特征的相互关联性;采用全局被动接收模式克服了固定感受野的问题;通过自监督方法有效利用每种模态的固有泛化信息 未提及具体限制 实现脑肿瘤的自动和准确分割 多模态脑肿瘤图像 计算机视觉 脑肿瘤 多参数磁共振成像(mpMRI) MFD-Net 图像 使用了BraTS 2022、2018、2019和2021数据集
126 2024-12-12
Large AI Models in Health Informatics: Applications, Challenges, and the Future
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
综述 本文全面回顾了大型AI模型在健康信息学中的应用、挑战及未来发展方向 探讨了大型AI模型在健康信息学中的七个关键应用领域,并提出了未来发展的潜在方向 未具体讨论大型AI模型在健康信息学中的具体技术细节和实际应用案例 探讨大型AI模型在健康信息学中的应用、挑战及未来发展方向 大型AI模型在健康信息学中的应用领域及未来发展方向 健康信息学 NA NA 大型AI模型 多模态数据 NA
127 2024-12-12
Deeply Accelerated Arterial Spin Labeling Perfusion MRI for Measuring Cerebral Blood Flow and Arterial Transit Time
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于深度学习的算法,用于减少动脉自旋标记(ASL)灌注MRI中的后标记延迟(PLD)数量,并准确估计脑血流量(CBF)和动脉转运时间(ATT) 本文的创新点在于使用深度学习算法减少了所需的PLD数量,并能够准确估计CBF和ATT,解决了传统方法中扫描时间过长和信噪比降低的问题 本文的局限性在于仅在Human Connectome Project数据集上进行了训练和测试,可能需要进一步验证其在其他数据集上的泛化能力 研究目的是开发一种能够在临床上实用的方法,通过减少PLD数量来准确测量脑血流量和动脉转运时间 研究对象是脑血流量(CBF)和动脉转运时间(ATT)的测量 医学影像 NA 动脉自旋标记(ASL)灌注MRI 深度神经网络 图像 使用了Human Connectome Project中的多PLD ASL MRI数据集
128 2024-12-11
The Contrastive Network With Convolution and Self-Attention Mechanisms for Unsupervised Cell Segmentation
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于卷积和自注意力机制的无监督细胞分割对比网络 该模型能够在没有任何标注的情况下对H&E染色切片上的细胞区域进行分割,无需生成伪标签,且在捕获对象边缘和上下文信息方面优于纯CNN或Transformer NA 开发一种无需任何标注的无监督细胞分割方法 H&E染色切片上的细胞区域 数字病理学 NA 卷积神经网络,自注意力机制 对比网络 图像 NA
129 2024-12-11
SwinDAE: Electrocardiogram Quality Assessment Using 1D Swin Transformer and Denoising AutoEncoder
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为SwinDAE的模型,用于心电图信号质量评估,结合了1D Swin Transformer和去噪自编码器 创新点在于将1D Swin Transformer引入去噪自编码器中,并提出了波形成分定位损失用于联合监督 NA 研究目的是提高心电图信号质量评估的泛化能力 心电图信号 机器学习 NA 去噪自编码器 Swin Transformer 信号 使用了PTB-XL数据集进行预训练,并在BUT QDB数据集上进行微调
130 2024-12-11
Evolutionary Architecture Optimization for Retinal Vessel Segmentation
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究提出了一种新的神经架构搜索方法MedUNAS,用于视网膜血管分割问题,通过优化U型网络架构以提高分割性能和降低推理时间 首次将对立差分进化(ODE)应用于视网膜血管分割问题的神经架构搜索,并提出了MedUNAS方法 需要进一步验证生成的网络在其他医疗图像分割任务中的泛化能力 开发一种自动化且高效的神经架构搜索方法,用于视网膜血管分割 视网膜血管分割问题 计算机视觉 NA 神经架构搜索(NAS) U型网络 图像 涉及多个数据集,具体样本数量未明确说明
131 2024-12-11
MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种名为MLDA的多损失域适配器方法,用于解决基于跨会话和跨情绪的EEG个体识别问题 创新点在于引入了多损失域适配器(MLDA),通过减少边缘分布和条件分布的差异来提高跨会话和跨情绪的EEG个体识别性能 未提及具体的局限性 旨在解决基于EEG的个体识别中跨会话和跨情绪的分类性能问题 研究对象是跨会话和跨情绪的EEG信号 机器学习 NA 深度神经网络、最大均值差异(MMD) 深度神经网络 EEG数据 未提及具体的样本数量
132 2024-12-11
SegCoFusion: An Integrative Multimodal Volumetric Segmentation Cooperating With Fusion Pipeline to Enhance Lesion Awareness
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为SegCoFusion的多模态体积分割与融合集成方法,通过结合特征频率分割网络FDNet和双单路径特征补充策略的分割部分,优化分割输入并与融合部分结合,以提高病变识别能力 SegCoFusion通过集成多模态分割与融合,打破了传统分割和融合方法的性能瓶颈,提供了一种新的视角来通过分割与融合协作提高体积融合性能并增强病变意识 NA 解决多模态医学图像融合中的主观性和任务特定性问题,提高分割和融合的性能 多模态脑肿瘤体积融合与分割 计算机视觉 脑肿瘤 深度学习 U-Net系列 图像 NA
133 2024-12-11
MPVF: 4D Medical Image Inpainting by Multi-Pyramid Voxel Flows
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为多金字塔体素流(MPVF)的模型,用于解决4D医学图像插值问题,特别是心脏和肺部图像的插值 本文的创新点在于提出了多金字塔体素流(MPVF)模型,通过考虑多尺度体素流,能够在插值过程中提供丰富的全局和区域信息,并引入了双边体素流(BVF)模块和金字塔融合(PyFu)模块 NA 本文的研究目的是解决4D医学图像插值问题,特别是心脏和肺部图像的插值 本文的研究对象是心脏和肺部的4D医学图像 计算机视觉 NA 深度学习 MPVF 图像 NA
134 2024-12-11
Deep Open-Curve Snake for Discriminative 3D Neuron Tracking
2023-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种新的深度学习框架Deep Open-Curve Snake (DOCS),用于三维神经元跟踪,通过学习3D距离回归判别器和深度学习跟踪器来提升跟踪性能 DOCS框架结合了深度学习技术,能够在噪声污染的弱信号环境下进行有效的神经元跟踪,并通过能量最小化方法迭代更新变形场、拉伸方向和局部半径 NA 提升三维神经元跟踪的准确性和鲁棒性 三维神经元结构的分段、追踪和重建 计算机视觉 NA 深度学习 卷积神经网络 (CNN) 三维体积数据 BigNeuron和Diadem数据集
135 2024-12-08
A newcomer's guide to deep learning for inverse design in nano-photonics
2023-Dec, Nanophotonics (Berlin, Germany)
review 本文为纳米光子学领域的新手提供了一个关于深度学习在逆向设计中应用的综合指南 本文填补了针对无深度学习经验新手的综合教程的空白,并提供了详细的Python笔记本示例以促进理解和实施 本文主要关注纳米光子学领域的研究人员,尽管对其他领域使用深度学习的研究人员也有参考价值 旨在为新手提供应用深度学习解决纳米光子学逆向设计问题的实用指导 纳米光子学设备的逆向设计 纳米光子学 NA 深度学习 NA NA NA
136 2024-12-02
Coarse-Graining with Equivariant Neural Networks: A Path Toward Accurate and Data-Efficient Models
2023-Dec-14, The journal of physical chemistry. B
研究论文 本文探讨了使用等变神经网络进行粗粒化分子建模和模拟,以提高模型的准确性和数据效率 本文提出通过引入等变卷积操作来减少神经网络在预测分子能量和力时对大量数据的需求 尽管等变卷积操作提高了数据效率,但模型仍然比成对力场慢 研究如何通过等变神经网络提高粗粒化分子模型的准确性和数据效率 粗粒化水分子模型 机器学习 NA 等变卷积操作 神经网络 分子动力学数据 单帧参考数据
137 2024-11-27
Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal-to-noise ratio and speed of MRS
2023-Dec, Medical physics IF:3.2Q1
研究论文 本文提出了一种使用堆叠自编码器(SAE)对磁共振波谱(MRS)数据进行去噪的方法,以提高信号噪声比(SNR)和MRS的采集速度 本文的创新点在于使用深度学习方法对MRS数据进行去噪,而不需要增加信号平均次数(NSA),从而缩短采集时间并提高SNR 本文的局限性在于仅在脑波谱模型和人体受试者数据上进行了验证,尚未在更广泛的临床环境中进行测试 本文的研究目的是通过深度学习方法提高MRS数据的SNR和采集速度,从而增强MRS的诊断价值和临床应用 本文的研究对象是磁共振波谱(MRS)数据,特别是低NSA数据 机器学习 NA 堆叠自编码器(SAE) 堆叠自编码器(SAE) 磁共振波谱(MRS)数据 研究使用了脑波谱模型和人体受试者的数据,包括脑肿瘤患者的数据
138 2024-11-14
Acceleration of high-quality Raman imaging via a locality enhanced transformer network
2023-Dec-04, The Analyst
研究论文 本文提出了一种局部增强的Transformer网络(LETNet)用于拉曼图像超分辨率处理,以加速高质量拉曼成像 本文创新性地将Transformer架构中的自注意力机制替换为卷积,并采用深度卷积优化模型,显著提高了计算效率 NA 本文旨在通过深度学习方法加速高质量拉曼成像,以促进其在实时诊断和治疗中的应用 本文研究对象包括乳腺癌细胞和脑肿瘤组织的拉曼图像 计算机视觉 乳腺癌、脑肿瘤 拉曼成像 Transformer网络 图像 乳腺癌细胞和脑肿瘤组织的拉曼图像
139 2024-11-10
Automatic segmentation of atrial fibrillation and flutter in single-lead electrocardiograms by self-supervised learning and Transformer architecture
2023-12-22, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
研究论文 本文开发了一种基于Transformer架构和自监督学习的深度学习模型,用于单导联心电图中的房颤和房扑自动分割 本文首次将Transformer架构与自监督学习结合,用于单导联心电图中的房颤和房扑分割 本文仅在11个公开数据库和24个外部验证样本上进行了验证,未来需在更多临床数据上进行验证 开发一种自动检测房颤和房扑的深度学习模型,以预防中风和缓解血流动力学不稳定 单导联心电图中的房颤和房扑 机器学习 心血管疾病 自监督学习 Transformer 心电图 11个公开数据库中的心电图数据,以及24个外部验证样本
140 2024-11-10
Diffusion Models To Predict 3D Late Mechanical Activation From Sparse 2D Cardiac MRIs
2023-Dec, Proceedings of machine learning research
PMID:38525446
研究论文 本文提出了一种基于形状约束扩散模型从稀疏的2D心脏MRI图像预测3D晚期机械激活(LMA)图的方法 本文的创新点在于利用从训练数据中学习到的对象形状作为先验知识,指导3D重建过程,而不是仅仅依赖于图像强度的空间相关性 NA 确定心脏再同步治疗中最佳起搏点的关键在于识别左心室心肌的晚期机械激活区域 左心室心肌的3D晚期机械激活图 计算机视觉 心血管疾病 深度学习 扩散模型 图像 使用了公开的3D心肌网格数据集进行训练和测试
回到顶部