本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181 | 2025-01-25 |
A fast monocular 6D pose estimation method for textureless objects based on perceptual hashing and template matching
2024, Frontiers in robotics and AI
IF:2.9Q2
DOI:10.3389/frobt.2024.1424036
PMID:39845569
|
研究论文 | 本文提出了一种基于感知哈希和模板匹配的快速单目6D姿态估计方法,适用于无纹理物体 | 提出了一种新的感知哈希方法用于二值图像,实现了快速且鲁棒的姿态估计,并自动预选模板子集以减少推理时间 | 在绝对精度上不如最先进的深度学习模型,但在精度和处理时间之间提供了更有利的权衡 | 开发一种在资源受限设备上高效运行的6D姿态估计方法,以降低硬件成本和功耗 | 无纹理物体 | 计算机视觉 | NA | 感知哈希和模板匹配 | NA | 图像 | 合成生成的数据集和一个公开可用的数据集 |
182 | 2025-01-25 |
Quantitative immunohistochemistry analysis of breast Ki67 based on artificial intelligence
2024, Open life sciences
IF:1.7Q3
DOI:10.1515/biol-2022-1013
PMID:39845722
|
研究论文 | 本文提出了一种基于深度学习的乳腺癌Ki67定量分析方法,旨在提高诊断效率和准确性 | 采用深度学习技术对乳腺癌Ki67进行定量分析,显著提高了诊断效率和一致性 | 未提及方法在其他类型癌症或更大样本中的适用性 | 开发一种高效的乳腺癌Ki67定量分析系统,以辅助病理诊断 | 乳腺癌病理图像中的Ki67表达 | 数字病理学 | 乳腺癌 | 深度学习 | CNN | 图像 | 未明确提及具体样本数量,但提到在临床独立样本实验中进行了验证 |
183 | 2025-01-25 |
Transformer-based model for predicting length of stay in intensive care unit in sepsis patients
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1473533
PMID:39845825
|
研究论文 | 本研究开发了一种基于Transformer的深度学习模型,用于预测脓毒症患者在重症监护病房(ICU)的住院时间 | 利用Transformer模型结合全局和局部输入数据分析,通过分类和特征标记,基于序贯器官衰竭评估(SOFA)标准进行预测 | 研究仅基于单一医院的521名患者数据,可能缺乏广泛代表性 | 优化ICU资源分配,减少医疗费用 | 脓毒症患者 | 机器学习 | 脓毒症 | 深度学习 | Transformer | 医疗数据 | 521名患者 |
184 | 2025-01-25 |
Multimodal data deep learning method for predicting symptomatic pneumonitis caused by lung cancer radiotherapy combined with immunotherapy
2024, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2024.1492399
PMID:39845959
|
研究论文 | 本文开发了一种基于深度学习的多模态数据融合模型,用于预测肺癌放疗联合免疫治疗引起的症状性肺炎 | 结合深度图像特征、放射组学特征和临床数据,开发了一种新的多模态融合模型,显著提高了预测性能 | 研究为回顾性设计,样本量相对较小,未来需要更大规模的前瞻性研究验证模型的泛化能力 | 开发一种能够准确预测肺癌患者放疗联合免疫治疗相关肺炎的模型 | 接受胸部放疗联合免疫治疗的肺癌患者 | 数字病理 | 肺癌 | 深度学习、放射组学 | ResNet34、DNN、随机森林(RF) | CT图像、临床数据 | 261名肺癌患者 |
185 | 2025-01-25 |
Transforming Healthcare: Artificial Intelligence (AI) Applications in Medical Imaging and Drug Response Prediction
2024, Genome integrity
DOI:10.14293/genint.15.1.002
PMID:39845982
|
评论 | 本文讨论了人工智能在医学影像和药物反应预测中的应用及其面临的挑战 | 探讨了人工智能在医学影像诊断和药物反应预测中的潜在应用,并强调了数据泛化和模型可解释性的重要性 | 未提供具体实验数据或案例研究,主要基于理论讨论 | 探讨人工智能在医学领域的应用潜力及实施挑战 | 医学影像和药物反应预测 | 机器学习 | NA | 机器学习和深度学习 | NA | 医学影像和药物反应数据 | NA |
186 | 2025-01-25 |
Retraction Note: COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images
2024, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-024-09992-6
PMID:39847664
|
retraction | 本文撤回了关于使用混合深度学习框架识别胸部X光图像中COVID-19病毒的文章 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
187 | 2025-01-25 |
Retraction Note: Performance evaluation of deep learning techniques for lung cancer prediction
2024, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-024-10107-4
PMID:39847665
|
retraction | 本文是对先前发表的关于深度学习技术在肺癌预测中性能评估的文章的撤稿声明 | NA | NA | NA | NA | NA | lung cancer | NA | NA | NA | NA |
188 | 2025-01-25 |
Retraction Note: Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm
2024, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-024-09993-5
PMID:39847670
|
撤回声明 | 本文是对先前发表的关于使用深度学习算法基于X光和CT图像早期诊断COVID-19患者的文章的撤回声明 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
189 | 2025-01-24 |
Utilization of Artificial Intelligence for the automated recognition of fine arts
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0312739
PMID:39585839
|
研究论文 | 本文介绍了一种基于人工智能和深度学习的自动化美术作品识别方法 | 提出了一种结合卷积神经网络和高级特征提取技术的创新方法,显著提高了美术作品分类的准确性和效率 | 未提及具体的数据集大小或实验的具体限制 | 提高自动化美术作品识别的准确性和效率 | 美术作品 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 未提及具体样本数量 |
190 | 2025-01-24 |
Integrating deep learning in public health: a novel approach to PICC-RVT risk assessment
2024, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2024.1445425
PMID:39839389
|
研究论文 | 本研究评估了七种不同的机器学习算法,包括三种深度学习和四种传统机器学习模型,利用时间序列数据评估PICC-RVT风险,并识别关键预测因素 | 首次将深度学习模型应用于PICC-RVT风险评估,并利用时间序列数据进行动态预测 | 现有模型通常将PICC-RVT风险评估为静态和离散结果,可能限制其实际应用 | 评估机器学习算法在预测PICC-RVT风险中的有效性,并识别关键预测因素 | 5,272名接受PICC置管的患者 | 机器学习 | 静脉血栓 | 机器学习算法 | DeepSurv, Cox-Time, 传统机器学习模型 | 时间序列数据 | 5,272名患者 |
191 | 2025-01-24 |
Deep learning captures the effect of epistasis in multifactorial diseases
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1479717
PMID:39839630
|
研究论文 | 本研究探讨了非线性和深度学习模型在预测多因素疾病风险中的应用,特别是考虑基因上位效应的影响 | 首次系统地比较了线性回归模型与非线性机器学习模型(包括深度学习)在模拟和真实遗传数据中捕捉基因上位效应的能力 | 研究主要基于模拟数据和特定疾病类型的真实数据,可能无法推广到所有多因素疾病 | 探索非线性和深度学习模型在预测多因素疾病风险中的有效性,特别是考虑基因上位效应 | 模拟数据和真实遗传数据,涉及肥胖、1型糖尿病和银屑病等疾病 | 机器学习 | 多因素疾病(如阿尔茨海默病、糖尿病、心血管疾病、癌症等) | GAMETES模拟数据生成,PyTOXO包生成渗透表 | 多层感知器(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)、Lasso回归、随机森林、梯度提升模型 | 遗传数据 | 模拟数据和真实遗传数据,具体样本数量未明确 |
192 | 2025-01-24 |
AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1509362
PMID:39839785
|
综述 | 本文系统回顾了基于机器学习的非肌层浸润性膀胱癌(NMIBC)复发预测框架,分析了其统计稳健性和算法效能 | 通过多模态数据集和多种机器学习模型(如神经网络、深度学习、随机森林)的结合,显著提高了预测准确性,并探讨了增强模型解释性的方法(如SHAP) | 由于数据集较小,模型的泛化能力有限,且高级模型的“黑箱”性质仍是一个挑战 | 提高非肌层浸润性膀胱癌(NMIBC)复发的预测精度,推动AI在肿瘤学中的应用 | 非肌层浸润性膀胱癌(NMIBC)患者 | 机器学习 | 膀胱癌 | 机器学习(ML)和人工智能(AI) | 神经网络、深度学习、随机森林、支持向量机 | 放射组学、临床、组织病理学、基因组数据 | NA |
193 | 2025-01-24 |
Artificial intelligence in breast cancer survival prediction: a comprehensive systematic review and meta-analysis
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1420328
PMID:39839787
|
系统综述与元分析 | 本文通过系统综述和元分析,评估了人工智能和机器学习算法在乳腺癌生存预测中的应用及其效果 | 本文首次全面评估了多种机器学习算法在乳腺癌生存预测中的表现,并强调了混合模型和深度学习(特别是卷积神经网络)的优势 | 大多数研究依赖内部验证,缺乏外部验证,可能影响模型的普适性和鲁棒性 | 评估人工智能和机器学习算法在乳腺癌生存预测中的准确性和应用潜力 | 乳腺癌患者的临床数据 | 机器学习 | 乳腺癌 | 机器学习算法 | 混合模型、卷积神经网络(CNN) | 临床数据 | 32篇符合条件的文章,涉及140篇初步筛选的文章 |
194 | 2025-01-24 |
Application of MRI image segmentation algorithm for brain tumors based on improved YOLO
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1510175
PMID:39840016
|
研究论文 | 本研究探讨了将改进的YOLOv5s深度学习算法模型应用于脑肿瘤磁共振图像分割的可行性,并在此基础上进行了优化和升级 | 在YOLOv5算法中引入了ASPP、CBAM和CA等结构改进,提出了多个优化版本,显著提升了脑肿瘤磁共振图像的分割能力 | 研究仅使用了两个公开数据集,样本量相对有限,可能影响模型的泛化能力 | 辅助临床快速识别脑肿瘤类型并实现分割检测 | 脑肿瘤磁共振图像 | 计算机视觉 | 脑肿瘤 | 深度学习 | YOLOv5s, YOLOv8s | 图像 | 3,223张图像(数据集1)和216张图像(数据集2) |
195 | 2025-01-24 |
Artificial intelligence-driven identification and mechanistic exploration of synergistic anti-breast cancer compound combinations from Prunella vulgaris L.-Taraxacum mongolicum Hand.-Mazz. herb pair
2024, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2024.1522787
PMID:39840098
|
研究论文 | 本研究利用人工智能和大规模生物医学数据,识别并验证了夏枯草-蒲公英草药对中具有协同抗乳腺癌作用的化合物组合及其作用机制 | 首次应用深度学习模型DeepMDS预测夏枯草-蒲公英草药对中的协同抗乳腺癌多化合物组合,并通过实验验证其效果 | 研究主要基于体外细胞实验,缺乏体内实验验证 | 识别和验证夏枯草-蒲公英草药对中的协同抗乳腺癌化合物组合及其作用机制 | 夏枯草(Prunella vulgaris L.)和蒲公英(Taraxacum mongolicum Hand.-Mazz.)的提取物及其化合物 | 生物医学 | 乳腺癌 | 液相色谱-质谱分析(LC-MS)、深度学习模型(DeepMDS) | 深度学习模型(DeepMDS) | 化学化合物数据、生物医学数据 | 夏枯草和蒲公英的50%乙醇提取物,分别鉴定出27和21种化合物 |
196 | 2025-01-24 |
A customized convolutional neural network-based approach for weeds identification in cotton crops
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1435301
PMID:39840351
|
研究论文 | 本文提出了一种基于定制卷积神经网络(CNN)的方法,用于棉花作物中的杂草识别 | 提出了一种新的基于深度CNN的架构,用于高效识别和分类棉花作物中的杂草,并在准确率上优于现有的VGG-16、ResNet、DenseNet和Xception模型 | 未提及具体的数据集规模或实验环境限制 | 开发一种高效的杂草识别和分类方法,以提高棉花作物的产量 | 棉花作物中的杂草 | 计算机视觉 | NA | 卷积神经网络(CNN) | CNN, VGG-16, ResNet, DenseNet, Xception | 图像 | 未提及具体样本数量 |
197 | 2025-01-23 |
Leveraging deep learning for robust EEG analysis in mental health monitoring
2024, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2024.1494970
PMID:39829439
|
研究论文 | 本文介绍了一种名为EEG Mind-Transformer的深度学习架构,用于改进基于EEG的心理健康监测 | 提出了EEG Mind-Transformer,结合了动态时间图注意力机制、分层图表示与分析模块以及时空融合模块,显著提升了EEG数据分析的准确性和适应性 | 未提及具体的数据集规模或多样性限制,可能影响模型的广泛适用性 | 改进基于EEG的心理健康监测方法,提高分类准确性和模型适应性 | EEG信号 | 机器学习 | 心理健康 | 深度学习 | EEG Mind-Transformer(结合DT-GAM、HGRA、STFM) | EEG信号 | 多个数据集,具体样本量未提及 |
198 | 2025-01-23 |
Non-invasive ML methods for diagnosis of congenital heart disease associated with pulmonary arterial hypertension
2024, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2024.1502725
PMID:39830028
|
综述 | 本文提出了两种非侵入性诊断算法,用于诊断与先天性心脏病相关的肺动脉高压 | 提出了直接三分法和两阶段分类模型两种非侵入性诊断算法,结合了时间、频率、能量域特征与深度学习特征 | 先天性心脏病相关肺动脉高压数据缺乏 | 探讨先天性心脏病相关肺动脉高压的辅助诊断方法 | 先天性心脏病相关肺动脉高压患者 | 机器学习 | 心血管疾病 | NA | Bi-LSTM, 集成学习 | 心音数据 | NA |
199 | 2025-01-23 |
ReIU: an efficient preliminary framework for Alzheimer patients based on multi-model data
2024, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2024.1449798
PMID:39830185
|
研究论文 | 本文介绍了一种基于U-Net和迭代配准学习(ReIU)的视网膜血管分割方法,用于从OCT血管成像(OCT-A)设备中提取视网膜血管图,并应用于阿尔茨海默病(AD)的早期筛查 | 提出了ReIU框架,结合多模态数据和深度学习技术,显著提高了阿尔茨海默病的早期筛查准确性 | 研究仅在DRIVE和HRF数据集上进行了验证,样本量和多样性可能有限 | 开发一种经济、非侵入性的阿尔茨海默病早期筛查工具 | 阿尔茨海默病患者和健康受试者的多模态数据 | 数字病理学 | 阿尔茨海默病 | OCT血管成像(OCT-A) | U-Net | 图像 | DRIVE和HRF数据集中的样本 |
200 | 2025-01-23 |
Protein-ligand binding affinity prediction using multi-instance learning with docking structures
2024, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2024.1518875
PMID:39830331
|
研究论文 | 本文提出了一种基于多实例学习和分子对接结构的蛋白质-配体结合亲和力预测方法 | 该方法利用多个分子对接构象进行预测,无需依赖共晶结构,提高了在缺乏共晶结构数据情况下的适用性 | 依赖于分子对接的预测结构,对接结构的准确性可能影响预测结果 | 提高蛋白质-配体结合亲和力预测的准确性,特别是在缺乏共晶结构数据的情况下 | 蛋白质-配体复合物 | 机器学习 | NA | 分子对接 | 多实例学习与注意力网络 | 3D结构数据 | 多个数据集,包括PDBbind和针对SARS-CoV-2主要蛋白酶的化合物 |