深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1868 篇文献,本页显示第 201 - 220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
201 2025-03-01
Deep learning for transesophageal echocardiography view classification
2024-01-02, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的多类别经食管超声心动图(TEE)视图分类模型,用于结构化术中和术中TEE成像数据 创新点在于开发了一个能够准确分类标准化TEE视图的深度学习模型,并进行了外部验证 研究的局限性在于仅使用了来自两个医疗中心的TEE视频数据进行训练和验证,样本来源较为单一 研究目的是通过深度学习技术对术中和术中TEE成像数据进行结构化分类 研究对象是术中和术中TEE视频数据 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 来自Cedars-Sinai Medical Center(CSMC)和Stanford University Medical Center(SUMC)的TEE视频数据
202 2025-02-28
Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning
2024, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在开发基于18F-FDG PET/CT图像的深度学习模型,用于预测肺腺癌(LUAD)患者的表皮生长因子受体(EGFR)突变状态 利用深度学习模型预测EGFR突变状态,结合PET/CT图像和临床特征,提高了预测的准确性 研究仅基于两个机构的430名患者,样本量可能不足以代表所有肺腺癌患者 开发预测肺腺癌患者EGFR突变状态的深度学习模型 430名非小细胞肺癌患者 计算机视觉 肺癌 18F-FDG PET/CT成像 Inception V3 图像 430名非小细胞肺癌患者
203 2025-02-27
Among Artificial Intelligence/Machine Learning Methods, Automated Gradient-Boosting Models Accurately Score Intraoral Plaque in Non-Standardized Images
2024, Journal of the California Dental Association
研究论文 本文开发并测试了用于非标准化口腔内菌斑图像自动选择和评分的模型,旨在提高预防试验中的主要结果测量准确性 使用梯度提升模型在非标准化图像中准确评分口腔内菌斑,避免了深度学习模型的高计算和财务成本 未使用深度学习模型,可能限制了模型的复杂性和潜在性能 开发并测试自动图像选择和口腔内菌斑评分模型,以提高预防试验中的主要结果测量准确性 435张来自UCSF/UCLA临床试验的照片中的1650颗菌斑显示的乳牙(牙齿D, E, F, G) 计算机视觉 NA 机器学习算法,包括支持向量机-高斯模型和梯度提升模型 支持向量机-高斯模型,梯度提升分类和回归模型 图像 435张照片中的1650颗乳牙
204 2025-02-26
Exploring the application of knowledge transfer to sports video data
2024, Frontiers in sports and active living IF:2.3Q2
研究论文 本研究探讨了知识转移在体育视频数据中的应用,特别是零样本学习(ZSL)和球员重识别技术 利用预训练的重识别模型提取特征嵌入,在零样本学习环境下评估其在橄榄球联赛和篮网球中的应用,展示了在动态体育环境中部分模型的有效性 非部分模型在背景干扰下表现不佳,且需要大量资源来重现结果 探索更高效的方法,以在不同体育项目中应用AI和计算机视觉技术,减少数据标注和模型训练成本 橄榄球联赛和篮网球的体育视频数据 计算机视觉 NA 零样本学习(ZSL) 预训练的重识别模型 视频 橄榄球联赛近35,000帧和篮网球近14,000帧的广播视频剪辑
205 2025-02-26
Multiomics Research: Principles and Challenges in Integrated Analysis
2024, Biodesign research
综述 本文综述了多组学研究的基本原则和挑战,强调了数据整合在揭示生物系统复杂相互作用和调控机制中的必要性 探讨了深度学习、图神经网络(GNNs)和生成对抗网络(GANs)等最新计算方法在多组学数据合成和解释中的应用,并提出了大语言模型在多组学分析中的潜力 需要大量的计算资源和复杂的模型调优 指导研究人员在多组学研究中导航原则和挑战,以促进整合生物分析的发展 多组学数据 生物信息学 NA 多组学技术(基因组学、转录组学、蛋白质组学、代谢组学等) 深度学习、图神经网络(GNNs)、生成对抗网络(GANs) 多组学数据 NA
206 2025-02-24
Deep learning performance on MRI prostate gland segmentation: evaluation of two commercially available algorithms compared with an expert radiologist
2024-Jan, Journal of medical imaging (Bellingham, Wash.)
研究论文 本研究评估了两种商用深度学习算法在MRI前列腺分割中的表现,并与专家放射科医生的手动分割进行了比较 在真实临床环境中评估商用AI模型的前列腺分割性能,填补了现有研究的空白 未对深度学习算法进行内部训练,且样本量相对较小 验证商用AI模型在前列腺分割中的准确性和临床应用价值 123名患者的多中心、多扫描仪MRI数据集 数字病理学 前列腺癌 深度学习算法 深度学习算法(DLA1和DLA2) MRI图像 123名患者
207 2025-02-23
Adaptive spatial-channel feature fusion and self-calibrated convolution for early maize seedlings counting in UAV images
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种基于DINO的深度学习方法RC-Dino,用于提高无人机图像中早期玉米幼苗计数的准确性 引入了两种创新组件:自校准卷积层RSCconv和自适应空间特征融合模块ASCFF,以提高早期玉米幼苗在特征图中的表示和区分能力 未提及具体局限性 提高无人机图像中早期玉米幼苗计数的准确性 早期玉米幼苗 计算机视觉 NA 深度学习 DINO, Faster R-CNN, RetinaNet, YOLOX, Deformable DETR 图像 1,233张标注图像,共83,404个标注
208 2025-02-23
Efficient and accurate identification of maize rust disease using deep learning model
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文开发了一种名为Maize-Rust的深度学习模型,用于高效准确地识别玉米锈病 该模型在YOLOv8s骨干网络中集成了SimAM模块和BiFPN进行尺度融合,并使用DWConv简化检测流程,显著提高了分类准确率和检测速度 未提及模型在其他作物病害上的泛化能力 提高玉米锈病的识别准确率和检测效率,以支持大规模田间锈病的有效检测和管理 玉米锈病(普通玉米锈病和南方玉米锈病) 计算机视觉 NA 深度学习 YOLOv8s, Faster-RCNN, SSD 图像 未提及具体样本数量
209 2025-02-21
Enhancing Human Activity Recognition in Smart Homes with Self-Supervised Learning and Self-Attention
2024-Jan-29, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于自监督学习和自注意力机制的新型AttCLHAR模型,用于智能家居环境中的人类活动识别,特别是在标注数据有限或无标注的情况下 结合了自监督学习框架SimCLR和自注意力机制,并引入了锐度感知最小化(SAM)以增强模型的泛化能力 需要进一步验证在更大规模和多样化数据集上的性能 提高智能家居环境中人类活动识别的准确性和效率,特别是在标注数据有限的情况下 智能家居环境中的老年人日常活动 机器学习 老年疾病 自监督学习,自注意力机制,锐度感知最小化(SAM) AttCLHAR(结合SimCLR和自注意力机制) 环境传感器数据 三个CASAS智能家居数据集(Aruba-1, Aruba-2, Milan)
210 2025-02-21
Optimizing classification of diseases through language model analysis of symptoms
2024-01-17, Scientific reports IF:3.8Q1
研究论文 本文研究了使用语言模型和深度学习技术从症状中自动化预测疾病的方法 探索了两种MCN-BERT模型和一种BiLSTM模型,每种模型使用不同的超参数优化方法,以从症状描述中预测疾病 NA 自动化疾病预测,支持早期检测和更及时的治疗,扩展远程诊断能力 症状描述和疾病标签 自然语言处理 NA 深度学习 MCN-BERT, BiLSTM 文本 Dataset-1: 1,200个数据点;Dataset-2: 23,516条推文
211 2025-02-21
Spatiotemporal convolutional long short-term memory for regional streamflow predictions
2024-Jan-15, Journal of environmental management IF:8.0Q1
研究论文 本文提出了一种结合CNN和LSTM的深度学习架构,用于同时预测美国86个流域的日径流量 创新点在于使用CNN编码空间模式,LSTM学习时间关系,有效结合了时空信息 未提及具体局限性 研究目的是改进区域尺度的降雨-径流(RR)建模 研究对象是美国86个流域的日径流量 机器学习 NA 深度学习 CNN-LSTM 时间序列数据(降水、最高温度、最低温度) 86个流域的一年数据
212 2025-02-21
Long short-term memory (LSTM)-based news classification model
2024, PloS one IF:2.9Q1
研究论文 本研究使用单向和双向长短期记忆(LSTM)深度学习网络进行中文新闻分类,并探讨了上下文信息对文本分类的影响,达到了较高的准确率 使用双向LSTM网络进行特征提取,结合单向LSTM网络进行特征整合,构建了一个高效的中文新闻分类模型 未提及模型在其他语言或更大数据集上的泛化能力 研究中文新闻分类的深度学习模型 中文新闻文章 自然语言处理 NA word2vec, Adam优化器, dropout LSTM, BiLSTM 文本 未提及具体样本数量
213 2025-02-21
TASA: Temporal Attention With Spatial Autoencoder Network for Odor-Induced Emotion Classification Using EEG
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种名为TASA的深度学习架构,用于使用脑电图(EEG)预测气味诱导的情绪 TASA架构通过两阶段学习框架改进,利用自编码器模块学习电极间的空间信息,并通过LSTM-MSA捕捉时间动态 NA 研究气味诱导的情绪分类 人类脑电图(EEG)数据 机器学习 NA EEG LSTM, 多头自注意力机制(MSA) 脑电图(EEG)数据 现有嗅觉EEG数据集
214 2025-02-21
Reservoir parameters prediction based on spatially transferred long short-term memory network
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于空间转移的长短期记忆网络的储层参数预测方法,以解决数据短缺问题 提出了一种基于转移学习的长短期记忆神经网络模型,通过共享神经网络结构中的部分参数,将历史数据的知识转移到新井预测中 由于检测成本、技术难度和复杂地质参数的限制,难以获得深度学习所需的大量数据 提高在数据短缺情况下的储层参数预测准确性 油气储层 机器学习 NA 转移学习 LSTM 地质数据 基于两个区块数据集进行测试
215 2025-02-21
W-WaveNet: A multi-site water quality prediction model incorporating adaptive graph convolution and CNN-LSTM
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种名为W-WaveNet的多站点水质预测模型,结合了自适应图卷积和CNN-LSTM,用于处理水质数据的时间和空间相关性 W-WaveNet模型首次将自适应图卷积与CNN-LSTM结合,能够处理多站点水质数据中的非对齐空间相关性,适用于不同时间跨度的水质数据处理 模型仅在两个真实河流段的多站点水质数据上进行了验证,可能需要更多数据集的测试以验证其普适性 研究目的是开发一种能够同时考虑时间和空间相关性的多站点水质预测模型 多站点水质数据 机器学习 NA 自适应图卷积、CNN-LSTM W-WaveNet 水质数据 两个真实河流段的多站点水质数据
216 2025-02-21
Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model
2024, PloS one IF:2.9Q1
研究论文 本研究旨在通过结合ARIMA模型与深度学习技术(LSTM和GRU),提高上海综合指数开盘价差预测的准确性 提出了一种结合ARIMA模型与深度学习技术(LSTM和GRU)的混合模型,用于预测上海综合指数的开盘价差 研究仅针对上海综合指数的开盘价差,未涉及其他股票指数或市场 提高上海综合指数开盘价差的预测准确性 上海综合指数的开盘价差 机器学习 NA ARIMA, LSTM, GRU ARIMA-LSTM, ARIMA-GRU 时间序列数据 1990年12月20日至2023年6月2日的上海综合指数数据
217 2025-02-21
Leveraging transfer learning with deep learning for crime prediction
2024, PloS one IF:2.9Q1
研究论文 本研究利用迁移学习与深度学习相结合的方法进行犯罪预测,旨在提高预测的准确性和效率 提出了基于BiLSTM的迁移学习架构,用于跨区域犯罪知识的转移,并在多个犯罪数据集上验证了其优越性 需要大量的犯罪数据和资源来训练最先进的深度学习模型,这可能限制了其广泛应用 提高犯罪预测的准确性和效率,以增强执法机构在控制和预防犯罪方面的能力 芝加哥、纽约和拉合尔的犯罪数据集 机器学习 NA 迁移学习、深度学习 BiLSTM、CNN-LSTM、SMA、WMA、EMA 犯罪数据 多个犯罪数据集(芝加哥、纽约、拉合尔)
218 2025-02-20
Deep Learning-based U-Mamba Model to Predict Differentiated Gastric Cancer using Radiomics Features from Spleen Segmentation
2024, Current medical imaging IF:1.1Q3
研究论文 本研究旨在开发一种基于深度学习的自动化方法,用于分割脾脏CT图像,并构建预测胃癌分化的模型 使用U-Mamba深度学习模型实现脾脏CT图像的自动分割,并结合放射组学特征预测胃癌分化程度 研究仅纳入了262名患者,样本量相对较小 开发自动化脾脏CT图像分割方法并构建胃癌分化预测模型 262名病理确诊的胃癌患者 数字病理 胃癌 CT成像 U-Mamba 图像 262名胃癌患者
219 2025-02-20
Deep learning and explainable AI for classification of potato leaf diseases
2024, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本研究提出了一种结合可解释人工智能(XAI)和迁移学习的深度学习方法,用于马铃薯叶部病害的准确分类 结合迁移学习和可解释AI技术,提升模型在有限标注数据下的学习能力,并通过Grad-CAM增强模型的可解释性 未提及具体的数据集规模限制或模型在其他作物病害上的泛化能力 提高马铃薯叶部病害分类的准确性和模型的可解释性 马铃薯叶部病害 计算机视觉 NA 迁移学习,可解释AI(XAI) 深度学习模型 图像 使用公开的马铃薯叶部病害数据集,具体样本数量未提及
220 2025-02-19
Differential diagnosis of frontotemporal dementia subtypes with explainable deep learning on structural MRI
2024, Frontiers in neuroscience IF:3.2Q2
研究论文 本研究旨在通过训练深度神经网络,基于结构性MRI自动区分三种临床表型的额颞叶痴呆(FTD)患者 提出了一种可解释的深度学习并行特征嵌入和可视化框架,用于区分FTD的三种临床亚型 样本量相对较小,且来自多个站点,可能存在数据异质性 自动区分额颞叶痴呆(FTD)的三种临床表型,以帮助早期和精确诊断 277名FTD患者(包括173名行为变异型FTD、63名非流利型原发性进行性失语和41名语义型原发性进行性失语) 数字病理学 老年疾病 结构性MRI 深度神经网络(DNN) 图像 277名FTD患者
回到顶部