深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1537 篇文献,本页显示第 201 - 220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
201 2024-12-08
SE-MAConvLSTM: A deep learning framework for short-term traffic flow prediction combining Squeeze-and-Excitation Network and Multi-Attention Convolutional LSTM Network
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种结合挤压激励网络和多注意力卷积LSTM网络的深度学习框架,用于短期交通流量预测 设计了时空特征提取模块和多注意力模块,分别解决了时空相关性捕捉和不同时间间隔通道权重对预测结果的影响问题 NA 提高短期交通流量预测的准确性 交通流量数据 机器学习 NA 卷积神经网络 (CNN), 挤压激励网络 (SENet), 残差网络 (ResNet), 卷积LSTM网络 (ConvLSTM) SE-MAConvLSTM 交通流量数据 两个真实数据集
202 2024-12-08
Exploiting the features of deep residual network with SVM classifier for human posture recognition
2024, PloS one IF:2.9Q1
研究论文 本文研究了基于深度残差网络和SVM分类器的人体姿态识别性能 提出了一种结合深度残差网络(ResNet-50)特征和支持向量机(SVM)分类器的混合架构,显著提高了人体姿态识别的准确性 NA 提高人体姿态识别的准确性和效率 人体姿态识别 计算机视觉 NA 深度学习 ResNet-50, SVM 图像 三个数据集:Multi-Camera Fall (MCF) 使用四种姿态,UR Fall detection (URFD) 使用四种姿态,UP-Fall detection (UPFD) 使用四种姿态
203 2024-12-08
Value of radiomics and deep learning feature fusion models based on dce-mri in distinguishing sinonasal squamous cell carcinoma from lymphoma
2024, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在构建和验证基于动态对比增强(DCE)成像的机器学习和深度学习特征模型,并评估放射组学和深度学习特征融合模型在区分鼻窦鳞状细胞癌和淋巴瘤中的临床价值 本研究创新性地结合了放射组学和深度学习特征,构建了一个融合模型,显著提高了区分鼻窦鳞状细胞癌和淋巴瘤的准确性 本研究为回顾性分析,样本量有限,未来需要更大规模的前瞻性研究来验证结果 开发一种能够在术前精确区分鼻窦鳞状细胞癌和淋巴瘤的方法,以制定合适的治疗方案 鼻窦鳞状细胞癌和鼻窦淋巴瘤 机器学习 鼻窦癌 动态对比增强磁共振成像(DCE-MRI) 深度学习模型(DL)和机器学习模型(ML) 图像 90例鼻窦肿瘤患者,包括50例鼻窦鳞状细胞癌和40例鼻窦淋巴瘤
204 2024-12-08
A transformer-based deep learning approach for fairly predicting post-liver transplant risk factors
2024-01, Journal of biomedical informatics IF:4.0Q2
研究论文 本文提出了一种基于Transformer的深度学习模型,用于公平预测肝移植后的风险因素 本文创新性地将肝移植后的风险预测问题转化为多任务学习问题,并提出了一种新的公平性算法,确保不同子群体之间的预测公平性 NA 解决肝移植中的两个主要挑战:找到最佳匹配的患者和确保不同子群体之间的移植公平性 肝移植后的风险因素,如心血管疾病和慢性排斥等 机器学习 NA 深度学习 Transformer 电子健康记录 160,360名肝移植患者的数据,包括人口统计信息、临床变量和实验室值
205 2024-12-07
Development of HepatIA: A computed tomography annotation platform and database for artificial intelligence training in hepatocellular carcinoma detection at a Brazilian tertiary teaching hospital
2024, Clinics (Sao Paulo, Brazil)
研究论文 本文介绍了HepatIA平台的开发,这是一个用于肝细胞癌检测的人工智能训练的计算机断层扫描注释平台和数据库 开发了一个全面的肝影像数据集HepatIA,支持肝病AI研究 NA 详细描述HepatIA平台的工具、数据组织和数据库结构,支持肝病AI研究 肝细胞癌(HCC)和肝硬化患者的CT扫描数据 计算机视觉 肝癌 计算机断层扫描(CT) NA 图像 656名患者,包括692个CT体积
206 2024-12-06
The impact of artificial intelligence in the diagnosis and management of acoustic neuroma: A systematic review
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
综述 本文系统回顾了人工智能在听神经瘤诊断和管理中的应用 探讨了机器学习和人工智能如何革新听神经瘤的管理和诊断程序 需要进一步研究以标准化人工智能方法,并验证其在医疗环境中的应用 研究人工智能和机器学习在听神经瘤诊断和管理中的潜力 听神经瘤的诊断和管理方法 机器学习 听神经瘤 NA NA NA NA
207 2024-12-06
Multi-dimensional dense attention network for pixel-wise segmentation of optic disc in colour fundus images
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 提出了一种多维密集注意力网络(MDDA-Net)用于彩色眼底图像中视盘的像素级分割 引入了密集注意力块和三重注意力块,以增强上下文表示能力和特征处理能力,并通过多尺度上下文融合获取多尺度上下文信息 未提及具体的局限性 提高视盘分割的准确性,以早期检测视网膜疾病 视盘的像素级分割 计算机视觉 NA 深度学习 MDDA-Net 图像 三个数据集(MESSIDOR和ORIGA)
208 2024-12-06
Fine grained automatic left ventricle segmentation via ROI based Tri-Convolutional neural networks
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 本文提出了一种基于Tri-Convolutional神经网络的左心室自动分割方法 本文创新性地结合了三种不同的深度学习结构,通过Tri-Convolutional网络实现了高精度的左心室分割 NA 提高左心室分割的准确性和效率 左心室图像的自动分割 计算机视觉 心血管疾病 深度学习 Tri-Convolutional神经网络 图像 使用了sunny brook、York、ACDC和LVSC数据集
209 2024-12-06
Gastrointestinal tract disease detection via deep learning based structural and statistical features optimized hexa-classification model
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 提出了一种基于深度学习的结构和统计特征优化六分类模型,用于检测胃肠道疾病 提出了Deep SS-Hexa模型,结合两种深度学习结构提取WCE图像的结构和统计特征,并通过Walrus优化算法选择最佳特征,最终使用深度信念网络进行六分类 未提及具体局限性 提高胃肠道疾病检测的准确性和效率 胃肠道疾病的检测 计算机视觉 胃肠道疾病 深度学习 深度信念网络 图像 使用了KVASIR和KID数据集
210 2024-12-06
A hybrid model for the classification of Autism Spectrum Disorder using Mu rhythm in EEG
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 研究利用脑电图中的Mu节律,结合机器学习和深度学习技术,开发了一种混合模型用于自闭症谱系障碍的分类 提出了一个结合深度学习和机器学习的混合模型,显著提高了自闭症谱系障碍的分类准确率 研究仅使用了有限的脑电图通道,可能无法全面反映自闭症谱系障碍的复杂性 提高自闭症谱系障碍与典型发育个体的分类准确率 自闭症谱系障碍患者和典型发育个体 机器学习 自闭症谱系障碍 脑电图 混合模型 脑电图数据 未明确提及样本数量
211 2024-12-06
CNN-based glioma detection in MRI: A deep learning approach
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 本文开发了一种基于卷积神经网络(CNN)的自动化胶质瘤分割算法,用于在MRI图像中准确识别肿瘤成分 本文利用CNN技术提高了胶质瘤分割的准确性,达到了与经验丰富的放射科医生和商用工具相当的水平 NA 开发一种自动化的胶质瘤分割算法,以提高诊断精度和量化 高级别胶质瘤(HGGs)和低级别胶质瘤(LGGs)的MRI扫描图像 计算机视觉 脑肿瘤 卷积神经网络(CNN) U-Net网络 MRI图像 285例高级别胶质瘤(HGGs)和低级别胶质瘤(LGGs)的MRI扫描
212 2024-12-06
Development of an efficient novel method for coronary artery disease prediction using machine learning and deep learning techniques
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 本文提出了一种基于机器学习和深度学习技术的新方法,用于提高冠状动脉疾病预测的准确性 本文提出了一种新的集成投票分类器模型,结合了多种机器学习算法和深度学习算法,以提高冠状动脉疾病预测的准确性 NA 提高冠状动脉疾病预测的准确性 冠状动脉疾病 机器学习 心血管疾病 机器学习、深度学习 集成投票分类器模型 临床数据 216例冠状动脉疾病病例
213 2024-12-06
Football teaching and training based on video surveillance using deep learning
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 本文研究了基于视频监控和深度学习的足球教学与训练,通过自动识别和分类训练动作来评估运动员的表现 本文提出了基于深度学习的足球教学动作识别模型(DL-FTMR),并结合惯性测量单元(IMU)和计算机视觉分析数据进行系统性研究 NA 研究目的是通过深度学习技术自动识别和分类足球教学与训练动作,以提高运动员的表现评估准确性 足球教学与训练动作的自动识别和分类 计算机视觉 NA 深度学习 卷积神经网络(CNN) 视频 使用了公开的Human Activity Recognition (HAR)数据集和UT-Interaction数据集
214 2024-12-06
Liver tumor segmentation method combining multi-axis attention and conditional generative adversarial networks
2024, PloS one IF:2.9Q1
研究论文 提出了一种结合多轴注意力和条件生成对抗网络的肝脏肿瘤分割方法 引入了多轴注意力机制和条件生成对抗网络,以解决现有方法在类不平衡、全局上下文特征融合不足和局部细节感知弱等问题 未提及具体局限性 提高肝脏肿瘤分割的效率和准确性 肝脏和肿瘤在腹部CT图像中的分割 计算机视觉 NA 深度学习 条件生成对抗网络 (cGAN) 图像 使用了LiTS公共数据集进行训练和测试
215 2024-12-06
DLLabelsCT: Annotation tool using deep transfer learning to assist in creating new datasets from abdominal computed tomography scans, case study: Pancreas
2024, PloS one IF:2.9Q1
研究论文 开发了一种名为DLLabelsCT的注释工具,利用深度迁移学习加速腹部CT扫描图像分析过程,并以胰腺为例进行了案例研究 提出了DLLabelsCT工具,通过使用ResNet34-UNet模型显著加速了注释过程,并展示了其在不同数据集上的高准确性和可扩展性 仅在胰腺分割任务上进行了验证,尚未在其他器官上进行广泛测试 开发一种能够加速医学图像注释过程的工具,以支持深度学习算法在放射学评估中的应用 腹部CT扫描图像中的胰腺分割 计算机视觉 NA 深度学习 CNN 图像 3715张CT扫描切片
216 2024-12-06
A fact based analysis of decision trees for improving reliability in cloud computing
2024, PloS one IF:2.9Q1
研究论文 本文通过比较五种机器学习算法在云计算中的准确性和故障预测能力,提出了一种改进决策树算法的方法 提出了对决策树(J48)算法的改进,以提高其在云计算中的可靠性和准确性 算法复杂度较高,需要进一步优化 提高云计算中的决策树算法的可靠性和准确性 五种机器学习算法在云计算中的性能 机器学习 NA 机器学习算法 决策树(J48) 数值数据 NA
217 2024-12-06
Dual assurance for healthcare and future education development: normalized assistance for low-income population in rural areas-evidence from the population identification
2024, Frontiers in public health IF:3.0Q2
研究论文 本研究探讨了农村低收入人口在医疗和未来教育方面的关系,并开发了一种智能识别分类模型来准确检测和分类农村低收入个体 提出了一个准确度达到91.93%的智能识别分类模型,超过了其他基线神经网络算法 研究仅限于广东省J市,结果可能不适用于其他地区 探索农村低收入人口在医疗和未来教育方面的关系,并为政策制定提供支持 农村低收入人口的医疗和教育状况 机器学习 NA 深度学习算法 神经网络 大数据 NA
218 2024-12-06
SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging
2024, Frontiers in nuclear medicine (Lausanne, Switzerland)
研究论文 本文介绍了一种基于生成对抗网络(GAN)和自相似性注意力机制的新型深度学习框架,用于重建低计数[18F]-FDG-PET脑部图像 提出了一个自相似性感知生成对抗框架(SMART-PET),利用自相似性注意力机制来增强PET图像的去噪效果,无需依赖MRI的解剖细节 NA 开发一种新的深度学习框架,用于提高低计数PET图像的质量,减少放射性暴露 低计数[18F]-FDG-PET脑部图像 计算机视觉 NA 生成对抗网络(GAN) 生成对抗网络(GAN) 图像 114名受试者,包括34名药物难治性癫痫患者、10名额颞叶痴呆患者和70名健康志愿者
219 2024-12-06
The effectiveness of deep learning model in differentiating benign and malignant pulmonary nodules on spiral CT
2024, Technology and health care : official journal of the European Society for Engineering and Medicine IF:1.4Q3
研究论文 研究深度学习模型在螺旋CT图像上区分良性和恶性肺结节的有效性 提出了一种基于深度学习的细粒度分类方法,用于区分肺结节,并展示了其在区分良恶性肺结节方面的优越性 研究样本量较小,且仅限于一家医院的病例 探讨基于深度学习的肺结节分类和分割算法在区分良恶性肺结节中的临床价值和诊断效果 良性和恶性肺结节 计算机视觉 肺部疾病 深度学习 深度学习模型 CT图像 120例肺结节患者
220 2024-12-05
[Changes in FDG-PET Images of Small Lung and Liver Masses Caused by the Deep Learning-based Time-of-flight Processing]
2024, Nihon Hoshasen Gijutsu Gakkai zasshi
研究论文 研究评估了基于深度学习的飞行时间处理(DL-ToF)对PET图像中肺部和肝脏小肿块的影响 DL-ToF通过后处理模拟飞行时间效应,应用深度学习增强PET图像 研究仅使用了一个胸腹部仿真模型,未涉及临床数据 评估DL-ToF在PET成像中的有效性 肺部和肝脏的小肿块 计算机视觉 NA PET成像 深度学习 图像 一个胸腹部仿真模型
回到顶部