深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1832 篇文献,本页显示第 221 - 240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
221 2025-01-31
Contrastive learning with transformer for adverse endpoint prediction in patients on DAPT post-coronary stent implantation
2024, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本研究提出了一种基于对比学习和Transformer的新方法,用于预测冠状动脉支架植入后接受双抗血小板治疗(DAPT)患者的不良事件 结合对比学习和Transformer架构,通过多头注意力机制优化特征表示,提升多时间间隔预测的准确性 研究依赖于回顾性数据,可能存在选择偏倚,且未进行外部验证 提高冠状动脉支架植入后DAPT患者不良事件的预测准确性 接受药物洗脱支架(DES)植入的成年患者 机器学习 心血管疾病 对比学习 Transformer 临床数据 19,713名成年患者
222 2025-01-30
A deep learning model for carotid plaques detection based on CTA images: a two stepwise early-stage clinical validation study
2024, Frontiers in neurology IF:2.7Q3
研究论文 本研究开发了一种基于CTA图像的深度学习模型,用于颈动脉斑块检测,并评估了该模型在临床应用中的可行性和价值 结合ResUNet与Pyramid Scene Parsing Network (PSPNet)增强斑块分割,并通过两步早期临床验证研究模拟真实临床斑块诊断场景 研究为回顾性设计,可能影响结果的普遍性 开发并验证一种基于CTA图像的深度学习模型,用于颈动脉斑块的检测 颈动脉粥样硬化斑块患者 计算机视觉 心血管疾病 CTA成像 ResUNet与PSPNet结合 图像 647名患者(475名训练,86名验证,86名测试)
223 2025-01-04
Transfer Learning With Active Sampling for Rapid Training and Calibration in BCI-P300 Across Health States and Multi-Centre Data
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种基于主动采样的迁移学习方法,用于在脑机接口(BCI)P300波检测中快速训练和校准,适用于不同健康状况和多中心数据 提出了基于Poison Sampling Disk(PDS)的主动采样(AS)方法,用于自适应迁移学习,显著提高了分类精度和训练效率 研究仍面临处理来自不同设备、受试者、多中心及健康与患者群体的多样性和不平衡数据集的挑战 提高脑机接口(BCI)P300波检测的分类精度和训练效率,适应不同健康状况和多中心数据 脑机接口(BCI)P300波检测 机器学习 NA 迁移学习,主动采样(AS) 卷积神经网络(CNN) 神经数据 两个不同的国际复制数据集
224 2025-01-26
Advancing precision agriculture with deep learning enhanced SIS-YOLOv8 for Solanaceae crop monitoring
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种改进的SIS-YOLOv8模型,用于提高复杂农业气候下的作物病害监测效率 引入了三个关键模块:Fusion-Inception Conv模块、C2f-SIS模块和SPPF-IS模块,以增强模型在复杂背景下的特征提取能力和泛化能力,同时通过Dep Graph剪枝方法减少了模型参数 模型在复杂气候条件下的鲁棒性仍需进一步验证,且未涉及其他作物或病害的测试 提高农业作物病害监测的自动化和精确性 马铃薯和番茄的病害监测 计算机视觉 NA 深度学习 SIS-YOLOv8 图像 NA
225 2025-01-26
Monitoring of agricultural progress in rice-wheat rotation area based on UAV RGB images
2024, Frontiers in plant science IF:4.1Q1
研究论文 本研究提出了一种基于无人机RGB图像和深度学习技术的精确监测稻麦轮作区农业进展的方法 结合无人机图像分析技术和深度学习技术,提出了一种新的农业进展监测方法,通过特征相关性分析去除冗余特征,并提出了适合农业进展分类的激活层特征,提高了分类准确性 未提及具体的研究区域和样本量,可能限制了方法的普适性 提高稻麦轮作区农业进展的实时监测效率 稻麦轮作区的农业进展 计算机视觉 NA 无人机图像分析技术、深度学习技术 随机森林模型、ResNet50 RGB图像 NA
226 2025-01-26
LiDAR point cloud denoising for individual tree extraction based on the Noise4Denoise
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文介绍了一种名为DEN4的无监督深度学习点云去噪算法,旨在提高LiDAR点云中单棵树分割的准确性 DEN4引入了多级噪声分离模块,有效区分信号和噪声,提高了信噪比(SNR)并减少了误差 NA 提高LiDAR点云中单棵树分割的准确性 LiDAR点云数据 计算机视觉 NA 深度学习 NA 点云数据 60个样本数据集
227 2025-01-26
Study on the application of deep learning artificial intelligence techniques in the diagnosis of nasal bone fracture
2024, International journal of burns and trauma IF:1.4Q3
研究论文 本文探讨了深度学习人工智能技术在鼻骨骨折诊断中的应用,通过三维重建颌面部CT图像来评估鼻骨骨折的识别及其临床诊断意义 首次将YOLOX检测模型与GhostNetv2分类模型结合,应用于鼻骨骨折的自动识别,并验证了AI辅助诊断在提高诊断准确率、敏感性和特异性方面的有效性 样本量较小(82名患者),且仅基于单一机构的回顾性数据,可能影响模型的泛化能力 评估深度学习人工智能技术在鼻骨骨折诊断中的应用效果 39名正常鼻骨患者和43名鼻骨骨折患者的颌面部CT三维重建图像 计算机视觉 鼻骨骨折 深度学习 YOLOX + GhostNetv2 CT图像 82名患者(39名正常,43名骨折),共247张图像
228 2025-01-26
Dynamic-budget superpixel active learning for semantic segmentation
2024, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文提出了一种动态预算超像素查询策略,用于提高语义分割任务中区域主动学习算法的查询效率 提出了一种新颖的动态预算超像素查询策略,能够根据图像中的高不确定性超像素数量动态调整查询预算,从而提高查询效率 未提及具体局限性 提高语义分割任务中区域主动学习算法的数据效率 语义分割任务中的图像数据 计算机视觉 NA 主动学习 NA 图像 两个数据集:农业领域图像数据集和Cityscapes数据集
229 2025-01-25
ID3RSNet: cross-subject driver drowsiness detection from raw single-channel EEG with an interpretable residual shrinkage network
2024, Frontiers in neuroscience IF:3.2Q2
研究论文 本文提出了一种名为ID3RSNet的新型可解释残差收缩网络,用于从单通道EEG信号中进行跨受试者驾驶员嗜睡检测 提出了一种结合注意力机制的残差收缩构建单元,用于自适应特征重新校准和软阈值去噪,并引入了基于EEG的类激活图(ECAM)可解释方法,以可视化分析样本学习模式 NA 开发一种无需校准的驾驶员嗜睡检测系统,使用单通道EEG信号 驾驶员嗜睡检测 机器学习 NA EEG信号处理 ID3RSNet(可解释残差收缩网络) 单通道EEG信号 NA
230 2025-01-25
Revolutionizing diagnosis of pulmonary Mycobacterium tuberculosis based on CT: a systematic review of imaging analysis through deep learning
2024, Frontiers in microbiology IF:4.0Q2
系统综述 本文综述了基于深度学习的CT成像分析在肺结核诊断中的应用,评估了其诊断准确性,并探讨了当前面临的挑战和未来研究方向 本文首次系统评估了深度学习在基于CT的肺结核诊断中的应用,并提出了数据稀缺性、模型泛化性、可解释性和伦理问题等关键挑战 研究仅纳入了7篇相关文献,样本量较小,且未进行定量分析 评估深度学习在基于CT的肺结核诊断中的准确性,并探讨其应用前景和挑战 肺结核(PTB)患者 计算机视觉 肺结核 深度学习(DL) NA CT图像 7篇相关文献
231 2025-01-25
A multi-modal multi-branch framework for retinal vessel segmentation using ultra-widefield fundus photographs
2024, Frontiers in cell and developmental biology IF:4.6Q1
研究论文 本文提出了一种多模态多分支框架M3B-Net,用于提高超广角眼底照片中的视网膜血管分割精度 M3B-Net框架结合了眼底荧光血管造影(FFA)图像,通过选择性融合模块(SFM)、局部感知融合模块(LPFM)和注意力引导上采样模块(AUM)提升分割性能 未明确提及具体局限性 提高超广角眼底图像中视网膜血管的分割精度,以支持疾病分析 超广角眼底照片中的视网膜血管 计算机视觉 NA 深度学习 M3B-Net(多模态多分支框架) 图像(超广角眼底照片和FFA图像) 未明确提及样本数量
232 2025-01-25
A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities
2024, Frontiers in artificial intelligence IF:3.0Q2
系统综述 本文系统综述了墨西哥在机器学习和深度学习领域的发展及其应用,涵盖了多个领域 提供了墨西哥在机器学习和深度学习领域的全面信息,包括趋势、空间位置、机构、出版问题、主题领域、算法应用和性能指标 主要关注墨西哥的应用,可能缺乏对其他国家的比较分析 提供墨西哥在机器学习和深度学习领域的应用和发展情况 120篇原始研究论文 机器学习, 深度学习 NA NA 人工神经网络(ANN), 随机森林(RF), 支持向量机(SVM) NA 120篇原始研究论文
233 2025-01-25
DLBWE-Cys: a deep-learning-based tool for identifying cysteine S-carboxyethylation sites using binary-weight encoding
2024, Frontiers in genetics IF:2.8Q2
研究论文 本文介绍了一种名为DLBWE-Cys的深度学习工具,用于准确识别蛋白质序列中的半胱氨酸S-羧乙基化位点 开发了一种新的深度学习模型DLBWE-Cys,结合了CNN、BiLSTM、Bahdanau注意力机制和全连接神经网络,并采用了专门设计的Binary-Weight编码方法 目前尚无其他计算工具能准确预测这些位点,这给该领域的研究带来了挑战 准确识别半胱氨酸S-羧乙基化位点,以阐明其在自身免疫疾病中的功能机制 蛋白质序列中的半胱氨酸S-羧乙基化位点 机器学习 自身免疫疾病 深度学习 CNN, BiLSTM, Bahdanau attention, FNN 蛋白质序列数据 NA
234 2025-01-25
A CT-based deep learning model for preoperative prediction of spread through air spaces in clinical stage I lung adenocarcinoma
2024, Frontiers in oncology IF:3.5Q2
研究论文 本文开发并验证了一种基于CT的深度学习模型,用于非侵入性预测临床I期肺腺癌的气道扩散(STAS),并与传统的临床语义模型进行了预测性能比较 采用Swin Transformer架构开发深度学习模型,用于预测STAS,其性能优于传统的临床语义模型 研究为回顾性设计,可能引入选择偏差,且样本量相对有限 开发并验证一种深度学习模型,用于预测临床I期肺腺癌的STAS 513例经病理证实的I期肺腺癌患者 数字病理 肺癌 CT扫描 Swin Transformer 图像 513例患者(训练队列386例,验证队列127例)
235 2025-01-25
Deep CNN ResNet-18 based model with attention and transfer learning for Alzheimer's disease detection
2024, Frontiers in neuroinformatics IF:2.5Q3
研究论文 本文提出了一种基于ResNet-18的深度学习模型,结合深度卷积和Squeeze and Excitation (SE)模块,用于阿尔茨海默病的检测 提出了一种结合SE模块的ResNet-18模型,减少了调参需求,并在小样本和不平衡数据集上表现优异 医疗数据收集成本高且涉及伦理问题,小数据集容易导致成本函数的局部最小值问题,类不平衡也会降低性能 开发一种有效的深度学习模型用于阿尔茨海默病的检测 阿尔茨海默病(AD)、认知正常(CN)和轻度认知障碍(MCI)患者 计算机视觉 阿尔茨海默病 深度卷积、Squeeze and Excitation (SE)模块、迁移学习 ResNet-18 图像 未明确说明样本数量
236 2025-01-25
A fast monocular 6D pose estimation method for textureless objects based on perceptual hashing and template matching
2024, Frontiers in robotics and AI IF:2.9Q2
研究论文 本文提出了一种基于感知哈希和模板匹配的快速单目6D姿态估计方法,适用于无纹理物体 提出了一种新的感知哈希方法用于二值图像,实现了快速且鲁棒的姿态估计,并自动预选模板子集以减少推理时间 在绝对精度上不如最先进的深度学习模型,但在精度和处理时间之间提供了更有利的权衡 开发一种在资源受限设备上高效运行的6D姿态估计方法,以降低硬件成本和功耗 无纹理物体 计算机视觉 NA 感知哈希和模板匹配 NA 图像 合成生成的数据集和一个公开可用的数据集
237 2025-01-25
Quantitative immunohistochemistry analysis of breast Ki67 based on artificial intelligence
2024, Open life sciences IF:1.7Q3
研究论文 本文提出了一种基于深度学习的乳腺癌Ki67定量分析方法,旨在提高诊断效率和准确性 采用深度学习技术对乳腺癌Ki67进行定量分析,显著提高了诊断效率和一致性 未提及方法在其他类型癌症或更大样本中的适用性 开发一种高效的乳腺癌Ki67定量分析系统,以辅助病理诊断 乳腺癌病理图像中的Ki67表达 数字病理学 乳腺癌 深度学习 CNN 图像 未明确提及具体样本数量,但提到在临床独立样本实验中进行了验证
238 2025-01-25
Transformer-based model for predicting length of stay in intensive care unit in sepsis patients
2024, Frontiers in medicine IF:3.1Q1
研究论文 本研究开发了一种基于Transformer的深度学习模型,用于预测脓毒症患者在重症监护病房(ICU)的住院时间 利用Transformer模型结合全局和局部输入数据分析,通过分类和特征标记,基于序贯器官衰竭评估(SOFA)标准进行预测 研究仅基于单一医院的521名患者数据,可能缺乏广泛代表性 优化ICU资源分配,减少医疗费用 脓毒症患者 机器学习 脓毒症 深度学习 Transformer 医疗数据 521名患者
239 2025-01-25
Transforming Healthcare: Artificial Intelligence (AI) Applications in Medical Imaging and Drug Response Prediction
2024, Genome integrity
评论 本文讨论了人工智能在医学影像和药物反应预测中的应用及其面临的挑战 探讨了人工智能在医学影像诊断和药物反应预测中的潜在应用,并强调了数据泛化和模型可解释性的重要性 未提供具体实验数据或案例研究,主要基于理论讨论 探讨人工智能在医学领域的应用潜力及实施挑战 医学影像和药物反应预测 机器学习 NA 机器学习和深度学习 NA 医学影像和药物反应数据 NA
240 2025-01-25
Retraction Note: COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images
2024, Soft computing IF:3.1Q2
retraction 本文撤回了关于使用混合深度学习框架识别胸部X光图像中COVID-19病毒的文章 NA NA NA NA NA NA NA NA NA NA
回到顶部