深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1869 篇文献,本页显示第 281 - 300 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
281 2025-10-07
VirGrapher: a graph-based viral identifier for long sequences from metagenomes
2024-01-22, Briefings in bioinformatics IF:6.8Q1
研究论文 提出基于图卷积网络的病毒识别方法VirGrapher,用于从宏基因组中识别长病毒序列 通过将长序列视为图结构并利用图卷积网络学习短子序列间的多层连接关系,解决了现有方法忽略序列间关系的问题 未提及具体的数据集规模和计算资源限制 提高从宏基因组中识别长病毒序列的性能 宏基因组中的长病毒序列 生物信息学 NA 宏基因组测序 GCN 序列数据 NA NA 图卷积网络 AUC, 准确率 NA
282 2025-10-07
Should we really use graph neural networks for transcriptomic prediction?
2024-01-22, Briefings in bioinformatics IF:6.8Q1
研究论文 本文通过系统基准测试评估图神经网络在转录组预测中的实际效果 首次提供完整可复现的基准测试,系统比较GNN与标准机器学习方法在转录组预测中的成本效益平衡 基于有限但受控的模拟数据集,可能无法完全代表真实世界的复杂性 评估图神经网络在转录组预测任务中的实际价值 基因表达数据和表型预测 生物信息学 NA 转录组分析 图神经网络, 标准机器学习方法 基因表达数据 多个数据集 NA 图神经网络 预测性能 NA
283 2025-10-07
Cracking the black box of deep sequence-based protein-protein interaction prediction
2024-01-22, Briefings in bioinformatics IF:6.8Q1
研究论文 系统评估基于深度学习的蛋白质-蛋白质相互作用预测方法的可靠性,揭示数据泄露和序列相似性对性能评估的影响 首次系统性地揭示深度学习模型在PPI预测中过度依赖数据泄露和序列相似性,而非真正学习蛋白质相互作用的生物学机制 研究主要关注序列相似性和网络拓扑信息的影响,未考虑其他可能影响PPI预测的因素 评估深度学习模型在蛋白质-蛋白质相互作用预测中的真实性能和可靠性 蛋白质-蛋白质相互作用预测模型 生物信息学 NA 深度学习, 机器学习 深度学习模型, 基础机器学习模型 蛋白质序列数据, 蛋白质相互作用网络数据 NA NA NA 准确率 NA
284 2025-10-07
SuperCUT, an unsupervised multimodal image registration with deep learning for biomedical microscopy
2024-01-22, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种基于深度学习的无监督多模态生物医学显微镜图像配准方法SuperCUT 结合模态域风格转换与完全无监督训练,无需人工标注即可达到与有监督方法相当的配准精度 NA 解决生物医学多模态图像配准的挑战 生物医学显微镜图像 计算机视觉 NA 显微镜成像 深度学习 多模态图像 NA NA NA 配准精度 NA
285 2025-10-07
Deep learning in spatially resolved transcriptfomics: a comprehensive technical view
2024-01-22, Briefings in bioinformatics IF:6.8Q1
综述 对空间转录组学中深度学习方法的全面技术评述 系统分析深度学习在空间转录组学中的创新应用,提出整合生物学细微特征的发展方向 现有方法在整合生物学细微特征和处理数据技术挑战方面仍有不足 评述深度学习在空间转录组学数据分析中的应用与挑战 空间转录组学数据(基因表达矩阵、空间信息和组织学图像) 计算生物学 NA 空间转录组学技术 深度学习 基因表达数据、空间坐标数据、组织学图像 NA NA NA NA NA
286 2025-10-07
Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers
2024-01-22, Briefings in bioinformatics IF:6.8Q1
研究论文 提出一种名为Enhancer-MDLF的新型多输入深度学习框架,用于识别细胞特异性增强子 开发了多输入深度学习框架,引入迁移学习解决增强子特异性预测挑战,并利用模型解释识别可能与增强子区域相关的转录因子结合位点基序 NA 开发更有效的细胞特异性增强子识别方法 人类细胞系中的增强子 生物信息学 NA 深度学习 深度学习框架 基因组数据 八种不同人类细胞系 NA 多输入深度学习框架 NA NA
287 2025-02-04
Leveraging deep learning for toxic comment detection in cursive languages
2024, PeerJ. Computer science
研究论文 本文提出了一种新的深度学习模型,用于检测乌尔都语中的有毒评论,通过使用transformer进行文本的二元分类 提出了一种新的模型来识别乌尔都语句子中的显著特征,并使用transformer进行有毒评论的检测 乌尔都语作为一种低资源语言,其复杂性和不规则性增加了检测难度 开发一种工具来检测乌尔都语中的有毒评论,以保护社区免受其负面影响 乌尔都语中的有毒评论 自然语言处理 NA 深度学习 transformer, BERT, GPT-2 文本 NA NA NA NA NA
288 2025-10-07
Enhancing healthcare recommendation: transfer learning in deep convolutional neural networks for Alzheimer disease detection
2024, Frontiers in medicine IF:3.1Q1
研究论文 本研究利用深度卷积神经网络和迁移学习技术,通过MRI图像检测阿尔茨海默病和轻度认知障碍 采用迁移学习技术增强模型性能,并在ADNI和OASIS数据集上对比了多种深度学习架构的表现 NA 开发有效的阿尔茨海默病和轻度认知障碍检测模型 阿尔茨海默病患者、轻度认知障碍患者和认知正常个体 计算机视觉 阿尔茨海默病 磁共振成像 CNN 图像 ADNI和OASIS数据集的MRI数据 NA DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-101, ResNet-152, U-Net 准确率 NA
289 2025-10-07
Sex differences in brain MRI using deep learning toward fairer healthcare outcomes
2024, Frontiers in computational neuroscience IF:2.1Q3
研究论文 本研究利用深度学习分析脑部MRI数据中的性别差异,旨在促进医学影像的公平性 首次在多个多样化数据集上使用3D CNN模型分析脑部MRI性别差异,并利用显著图识别关键脑区差异 模型在极端脑尺寸情况下存在偏差,且未使用颅内总体积调整技术 探索脑部MRI中的性别差异,促进医疗AI算法的公平性发展 脑部MRI图像数据 医学影像分析 神经系统疾病 3D T1加权磁共振成像 CNN 3D医学影像 来自四个数据集:Calgary-Campinas-359、OASIS-3、阿尔茨海默病神经影像倡议、剑桥老龄化与神经科学中心 NA 卷积神经网络 准确率 NA
290 2025-10-07
DFMA: an improved DeepLabv3+ based on FasterNet, multi-receptive field, and attention mechanism for high-throughput phenotyping of seedlings
2024, Frontiers in plant science IF:4.1Q1
研究论文 提出基于DeepLabv3+改进的DFMA模型,用于植物幼苗高通量表型分析 引入新型ASPP结构PSPA-ASPP,结合FasterNet、多感受野和注意力机制 未明确说明模型计算复杂度及在更多植物物种上的泛化能力 提高植物幼苗表型分析效率,替代传统人工测量方法 水稻幼苗及拟南芥、二穗短柄草、白芥等公开数据集植物 计算机视觉 NA 深度学习图像分割 CNN 幼苗图像 自建水稻幼苗数据集及多个公开数据集 NA DeepLabv3+, FasterNet, PSPA-ASPP mIoU NA
291 2025-10-07
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction
2024-Jan, IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision
研究论文 提出一种基于序数分类和距离正则化的鲁棒脑龄预测方法,用于阿尔茨海默病早期检测 将脑龄预测任务从回归重构为分类,并提出新颖的序数距离编码正则化损失函数来保留年龄标签的顺序信息 NA 开发更可靠的脑龄预测方法,作为阿尔茨海默病早期检测的生物标志物 脑部磁共振成像数据和阿尔茨海默病临床数据 医学影像分析 阿尔茨海默病 磁共振成像 深度学习 图像 NA NA NA 统计显著性差异 NA
292 2025-10-07
Multi-Head Graph Convolutional Network for Structural Connectome Classification
2024, Graphs in biomedical image analysis, and overlapped cell on tissue dataset for histopathology : 5th MICCAI Workshop, GRAIL 2023 and 1st MICCAI Challenge, OCELOT 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, Septembe...
研究论文 提出一种多头部图卷积网络模型,用于基于脑连接组数据的分类任务 设计并行多头部图卷积机制,分别关注边和节点的图卷积操作,从脑连接数据中全面提取互补特征表示 NA 开发基于脑连接组的分类模型,研究连接组随性别变化的差异 人脑结构连接组 机器学习 NA 扩散磁共振成像 图卷积网络 图数据 PREVENT-AD数据集347名受试者,OASIS3数据集771名受试者 NA 多头部图卷积网络 NA NA
293 2025-02-01
Application of Deep Learning Algorithms Based on the Multilayer Y0L0v8 Neural Network to Identify Fungal Keratitis
2024, Sovremennye tekhnologii v meditsine
研究论文 本文开发了一种基于深度学习算法的真菌性角膜炎诊断方法,通过分析眼前节照片,并在测试数据集上评估该方法的敏感性和特异性,与执业眼科医生的结果进行比较 使用多层Y0L0v8神经网络进行真菌性角膜炎的自动诊断,这是首次将此类深度学习算法应用于该疾病的诊断 方法的性能仅在测试数据集上进行了评估,未在更大规模或多样化的临床环境中验证 开发一种基于深度学习算法的真菌性角膜炎诊断方法 真菌性角膜炎 计算机视觉 角膜炎 深度学习 Y0L0v8神经网络 图像 NA NA NA NA NA
294 2025-02-01
Evolution of artificial intelligence in healthcare: a 30-year bibliometric study
2024, Frontiers in medicine IF:3.1Q1
研究论文 本文对过去30年医疗保健领域人工智能(AI)的文献进行了动态和纵向的文献计量分析,以探讨医学与人工智能融合的现状和趋势 首次对医疗保健领域AI文献进行30年的纵向文献计量分析,揭示了AI技术在医疗领域的持续爆发性增长趋势 研究主要基于Web of Science数据库,可能未涵盖所有相关文献 探讨医学与人工智能融合的现状和趋势 1993年至2023年间发表的医疗保健领域AI相关文献 机器学习 NA 文献计量分析 NA 文献数据 22,950篇文献 NA NA NA NA
295 2025-10-07
Advances in Protein-Ligand Binding Affinity Prediction via Deep Learning: A Comprehensive Study of Datasets, Data Preprocessing Techniques, and Model Architectures
2024, Current drug targets IF:3.0Q2
综述 本文全面分析了蛋白质-配体结合亲和力预测领域的深度学习技术,包括常用数据集、数据预处理方法和模型架构 填补了先前研究的空白,对常用数据集进行了全面质量分析,并对最新深度学习方法提供了全新分类视角 基于文献调研的方法可能无法涵盖所有最新进展,数据质量和模型可解释性问题仍是挑战 加速开发更有效可靠的蛋白质-配体结合亲和力预测深度学习模型 蛋白质-配体相互作用 机器学习 NA 深度学习 图神经网络,卷积神经网络,Transformer 分子结构数据 NA NA GNN,CNN,Transformer NA NA
296 2025-10-07
The application of explainable artificial intelligence (XAI) in electronic health record research: A scoping review
2024 Jan-Dec, Digital health IF:2.9Q2
综述 本文对电子健康记录研究中可解释人工智能方法的应用范围进行了系统性评述 首次系统性地评估了XAI方法在电子健康记录研究中的应用现状和发展趋势 纳入研究的方法报告不完整,缺乏对有效性和稳健性的严格评估 评估可解释人工智能方法在电子健康记录数据分析中的应用效果 使用电子健康记录数据并应用机器学习和深度学习模型的研究 机器学习 NA 可解释人工智能 Extreme Gradient Boosting, Random Forest 表格型电子健康记录数据 76篇纳入分析的出版物(来自3220篇初始文献) NA NA NA NA
297 2025-01-31
A scoping review of magnetic resonance angiography and perfusion image synthesis
2024, Frontiers in dementia
综述 本文探讨了人工智能在从现有神经解剖和神经血管采集数据中生成合成TOF-MRA和灌注相关图像的应用,以研究脑血管系统 利用深度学习技术从现有对比度生成合成医学图像,特别是TOF-MRA和灌注MRI图像,为脑血管研究提供新的视角 需要进一步研究以评估这些合成图像的敏感性和特异性,并确保其在不同人群中的适用性 研究人工智能在生成合成TOF-MRA和灌注相关图像中的应用,以增强脑血管研究 脑血管系统及其与阿尔茨海默病等疾病的关联 医学影像 阿尔茨海默病 深度学习 NA 医学影像 729项研究中的13项符合标准 NA NA NA NA
298 2025-01-31
Past, present, and future of electrical impedance tomography and myography for medical applications: a scoping review
2024, Frontiers in bioengineering and biotechnology IF:4.3Q2
综述 本文综述了两种新兴的电阻抗技术:电阻抗肌电图(EIM)和电阻抗断层扫描(EIT),并探讨了它们在医学应用中的过去、现在和未来 总结了EIM和EIT技术的最新进展,特别是数字采集、处理算法和重建工具的应用,以及机器学习和深度学习在诊断、治疗计划和监测中的作用 未具体提及研究的局限性 探讨电阻抗技术在医学应用中的发展、算法、工具和数据集,为研究人员和临床医生提供有效使用和创新研究的信息 电阻抗肌电图(EIM)和电阻抗断层扫描(EIT)技术 医学成像 癌症、肺部疾病、神经肌肉疾病 电阻抗技术、电压控制电流源(VCCS) NA 电阻抗数据 NA NA NA NA NA
299 2025-01-31
Recent advances in deep learning and language models for studying the microbiome
2024, Frontiers in genetics IF:2.8Q2
综述 本文综述了深度学习和语言模型在微生物组和宏基因组数据分析中的应用 探讨了将大型语言模型(LLMs)应用于微生物蛋白质和基因组序列分析的新方法,以及这些方法在微生物生态学研究中的贡献 NA 研究深度学习和语言模型在微生物组和宏基因组数据分析中的应用 微生物蛋白质和基因组序列 自然语言处理 NA 大型语言模型(LLMs) LLMs 蛋白质和基因组序列 NA NA NA NA NA
300 2025-01-31
LWheatNet: a lightweight convolutional neural network with mixed attention mechanism for wheat seed classification
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种轻量级的卷积神经网络LWheatNet,用于小麦种子分类,结合了混合注意力机制和堆叠的倒置残差卷积网络 提出了混合注意力机制,结合了通道注意力和空间注意力,并设计了堆叠的倒置残差网络,使用深度可分离卷积、通道混洗和通道分割技术来减少模型参数和计算量 未提及具体局限性 提高小麦种子分类的准确性和实时性 小麦种子图像 计算机视觉 NA 深度可分离卷积、通道混洗、通道分割 CNN 图像 未提及具体样本数量 NA NA NA NA
回到顶部