本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 321 | 2025-01-25 |
A fast monocular 6D pose estimation method for textureless objects based on perceptual hashing and template matching
2024, Frontiers in robotics and AI
IF:2.9Q2
DOI:10.3389/frobt.2024.1424036
PMID:39845569
|
研究论文 | 本文提出了一种基于感知哈希和模板匹配的快速单目6D姿态估计方法,适用于无纹理物体 | 提出了一种新的感知哈希方法用于二值图像,实现了快速且鲁棒的姿态估计,并自动预选模板子集以减少推理时间 | 在绝对精度上不如最先进的深度学习模型,但在精度和处理时间之间提供了更有利的权衡 | 开发一种在资源受限设备上高效运行的6D姿态估计方法,以降低硬件成本和功耗 | 无纹理物体 | 计算机视觉 | NA | 感知哈希和模板匹配 | NA | 图像 | 合成生成的数据集和一个公开可用的数据集 | NA | NA | NA | NA |
| 322 | 2025-01-25 |
Quantitative immunohistochemistry analysis of breast Ki67 based on artificial intelligence
2024, Open life sciences
IF:1.7Q3
DOI:10.1515/biol-2022-1013
PMID:39845722
|
研究论文 | 本文提出了一种基于深度学习的乳腺癌Ki67定量分析方法,旨在提高诊断效率和准确性 | 采用深度学习技术对乳腺癌Ki67进行定量分析,显著提高了诊断效率和一致性 | 未提及方法在其他类型癌症或更大样本中的适用性 | 开发一种高效的乳腺癌Ki67定量分析系统,以辅助病理诊断 | 乳腺癌病理图像中的Ki67表达 | 数字病理学 | 乳腺癌 | 深度学习 | CNN | 图像 | 未明确提及具体样本数量,但提到在临床独立样本实验中进行了验证 | NA | NA | NA | NA |
| 323 | 2025-01-25 |
Transformer-based model for predicting length of stay in intensive care unit in sepsis patients
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1473533
PMID:39845825
|
研究论文 | 本研究开发了一种基于Transformer的深度学习模型,用于预测脓毒症患者在重症监护病房(ICU)的住院时间 | 利用Transformer模型结合全局和局部输入数据分析,通过分类和特征标记,基于序贯器官衰竭评估(SOFA)标准进行预测 | 研究仅基于单一医院的521名患者数据,可能缺乏广泛代表性 | 优化ICU资源分配,减少医疗费用 | 脓毒症患者 | 机器学习 | 脓毒症 | 深度学习 | Transformer | 医疗数据 | 521名患者 | NA | NA | NA | NA |
| 324 | 2025-01-25 |
Transforming Healthcare: Artificial Intelligence (AI) Applications in Medical Imaging and Drug Response Prediction
2024, Genome integrity
DOI:10.14293/genint.15.1.002
PMID:39845982
|
评论 | 本文讨论了人工智能在医学影像和药物反应预测中的应用及其面临的挑战 | 探讨了人工智能在医学影像诊断和药物反应预测中的潜在应用,并强调了数据泛化和模型可解释性的重要性 | 未提供具体实验数据或案例研究,主要基于理论讨论 | 探讨人工智能在医学领域的应用潜力及实施挑战 | 医学影像和药物反应预测 | 机器学习 | NA | 机器学习和深度学习 | NA | 医学影像和药物反应数据 | NA | NA | NA | NA | NA |
| 325 | 2025-01-25 |
Retraction Note: COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images
2024, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-024-09992-6
PMID:39847664
|
retraction | 本文撤回了关于使用混合深度学习框架识别胸部X光图像中COVID-19病毒的文章 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 326 | 2025-01-25 |
Retraction Note: Performance evaluation of deep learning techniques for lung cancer prediction
2024, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-024-10107-4
PMID:39847665
|
retraction | 本文是对先前发表的关于深度学习技术在肺癌预测中性能评估的文章的撤稿声明 | NA | NA | NA | NA | NA | lung cancer | NA | NA | NA | NA | NA | NA | NA | NA |
| 327 | 2025-01-25 |
Retraction Note: Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm
2024, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-024-09993-5
PMID:39847670
|
撤回声明 | 本文是对先前发表的关于使用深度学习算法基于X光和CT图像早期诊断COVID-19患者的文章的撤回声明 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 328 | 2025-10-07 |
Utilization of Artificial Intelligence for the automated recognition of fine arts
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0312739
PMID:39585839
|
研究论文 | 本文提出了一种基于人工智能和深度学习的自动化美术作品识别方法 | 将先进特征提取技术与定制化CNN架构相结合,显著提升了美术作品分类的准确性和效率 | NA | 提升自动化美术作品识别的性能 | 美术作品 | 计算机视觉 | NA | 深度学习,特征提取技术 | CNN | 图像 | 基准数据集 | NA | 定制化CNN架构 | 准确率 | NA |
| 329 | 2025-10-07 |
Integrating deep learning in public health: a novel approach to PICC-RVT risk assessment
2024, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2024.1445425
PMID:39839389
|
研究论文 | 本研究评估了七种机器学习算法在预测经外周置入中心静脉导管相关静脉血栓风险中的表现,并识别了关键预测因素 | 首次将时间序列数据整合到PICC-RVT风险评估中,比较了深度学习和传统机器学习模型的性能 | 回顾性多中心研究设计,可能存在选择偏倚 | 评估机器学习算法在PICC-RVT风险评估中的有效性并识别关键预测因素 | 接受PICC置管的5,272名患者 | 机器学习 | 静脉血栓 | 机器学习 | 深度学习, 传统机器学习 | 时间序列数据,包括人口统计学、临床病理学和治疗数据 | 5,272名患者 | NA | DeepSurv, Cox-Time | 一致性指数, Brier评分, 组内相关系数 | NA |
| 330 | 2025-01-24 |
Deep learning captures the effect of epistasis in multifactorial diseases
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1479717
PMID:39839630
|
研究论文 | 本研究探讨了非线性和深度学习模型在预测多因素疾病风险中的应用,特别是考虑基因上位效应的影响 | 首次系统地比较了线性回归模型与非线性机器学习模型(包括深度学习)在模拟和真实遗传数据中捕捉基因上位效应的能力 | 研究主要基于模拟数据和特定疾病类型的真实数据,可能无法推广到所有多因素疾病 | 探索非线性和深度学习模型在预测多因素疾病风险中的有效性,特别是考虑基因上位效应 | 模拟数据和真实遗传数据,涉及肥胖、1型糖尿病和银屑病等疾病 | 机器学习 | 多因素疾病(如阿尔茨海默病、糖尿病、心血管疾病、癌症等) | GAMETES模拟数据生成,PyTOXO包生成渗透表 | 多层感知器(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)、Lasso回归、随机森林、梯度提升模型 | 遗传数据 | 模拟数据和真实遗传数据,具体样本数量未明确 | NA | NA | NA | NA |
| 331 | 2025-01-24 |
AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1509362
PMID:39839785
|
综述 | 本文系统回顾了基于机器学习的非肌层浸润性膀胱癌(NMIBC)复发预测框架,分析了其统计稳健性和算法效能 | 通过多模态数据集和多种机器学习模型(如神经网络、深度学习、随机森林)的结合,显著提高了预测准确性,并探讨了增强模型解释性的方法(如SHAP) | 由于数据集较小,模型的泛化能力有限,且高级模型的“黑箱”性质仍是一个挑战 | 提高非肌层浸润性膀胱癌(NMIBC)复发的预测精度,推动AI在肿瘤学中的应用 | 非肌层浸润性膀胱癌(NMIBC)患者 | 机器学习 | 膀胱癌 | 机器学习(ML)和人工智能(AI) | 神经网络、深度学习、随机森林、支持向量机 | 放射组学、临床、组织病理学、基因组数据 | NA | NA | NA | NA | NA |
| 332 | 2025-01-24 |
Artificial intelligence in breast cancer survival prediction: a comprehensive systematic review and meta-analysis
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1420328
PMID:39839787
|
系统综述与元分析 | 本文通过系统综述和元分析,评估了人工智能和机器学习算法在乳腺癌生存预测中的应用及其效果 | 本文首次全面评估了多种机器学习算法在乳腺癌生存预测中的表现,并强调了混合模型和深度学习(特别是卷积神经网络)的优势 | 大多数研究依赖内部验证,缺乏外部验证,可能影响模型的普适性和鲁棒性 | 评估人工智能和机器学习算法在乳腺癌生存预测中的准确性和应用潜力 | 乳腺癌患者的临床数据 | 机器学习 | 乳腺癌 | 机器学习算法 | 混合模型、卷积神经网络(CNN) | 临床数据 | 32篇符合条件的文章,涉及140篇初步筛选的文章 | NA | NA | NA | NA |
| 333 | 2025-01-24 |
Application of MRI image segmentation algorithm for brain tumors based on improved YOLO
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1510175
PMID:39840016
|
研究论文 | 本研究探讨了将改进的YOLOv5s深度学习算法模型应用于脑肿瘤磁共振图像分割的可行性,并在此基础上进行了优化和升级 | 在YOLOv5算法中引入了ASPP、CBAM和CA等结构改进,提出了多个优化版本,显著提升了脑肿瘤磁共振图像的分割能力 | 研究仅使用了两个公开数据集,样本量相对有限,可能影响模型的泛化能力 | 辅助临床快速识别脑肿瘤类型并实现分割检测 | 脑肿瘤磁共振图像 | 计算机视觉 | 脑肿瘤 | 深度学习 | YOLOv5s, YOLOv8s | 图像 | 3,223张图像(数据集1)和216张图像(数据集2) | NA | NA | NA | NA |
| 334 | 2025-01-24 |
Artificial intelligence-driven identification and mechanistic exploration of synergistic anti-breast cancer compound combinations from Prunella vulgaris L.-Taraxacum mongolicum Hand.-Mazz. herb pair
2024, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2024.1522787
PMID:39840098
|
研究论文 | 本研究利用人工智能和大规模生物医学数据,识别并验证了夏枯草-蒲公英草药对中具有协同抗乳腺癌作用的化合物组合及其作用机制 | 首次应用深度学习模型DeepMDS预测夏枯草-蒲公英草药对中的协同抗乳腺癌多化合物组合,并通过实验验证其效果 | 研究主要基于体外细胞实验,缺乏体内实验验证 | 识别和验证夏枯草-蒲公英草药对中的协同抗乳腺癌化合物组合及其作用机制 | 夏枯草(Prunella vulgaris L.)和蒲公英(Taraxacum mongolicum Hand.-Mazz.)的提取物及其化合物 | 生物医学 | 乳腺癌 | 液相色谱-质谱分析(LC-MS)、深度学习模型(DeepMDS) | 深度学习模型(DeepMDS) | 化学化合物数据、生物医学数据 | 夏枯草和蒲公英的50%乙醇提取物,分别鉴定出27和21种化合物 | NA | NA | NA | NA |
| 335 | 2025-01-24 |
A customized convolutional neural network-based approach for weeds identification in cotton crops
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1435301
PMID:39840351
|
研究论文 | 本文提出了一种基于定制卷积神经网络(CNN)的方法,用于棉花作物中的杂草识别 | 提出了一种新的基于深度CNN的架构,用于高效识别和分类棉花作物中的杂草,并在准确率上优于现有的VGG-16、ResNet、DenseNet和Xception模型 | 未提及具体的数据集规模或实验环境限制 | 开发一种高效的杂草识别和分类方法,以提高棉花作物的产量 | 棉花作物中的杂草 | 计算机视觉 | NA | 卷积神经网络(CNN) | CNN, VGG-16, ResNet, DenseNet, Xception | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
| 336 | 2025-01-23 |
Meibomian gland alterations in allergic conjunctivitis: insights from a novel quantitative analysis algorithm
2024, Frontiers in cell and developmental biology
IF:4.6Q1
DOI:10.3389/fcell.2024.1518154
PMID:39834396
|
研究论文 | 本研究利用智能定量分析算法探讨了过敏性结膜炎患者中睑板腺结构的变化及其与临床参数的关系 | 采用深度学习基础的定量分析算法对睑板腺图像进行分析,评估腺体长度、面积、脱落比例和变形 | 研究未明确说明样本的年龄分布及其他潜在影响因素 | 探讨过敏性结膜炎患者睑板腺结构的变化及其与临床参数的关系 | 过敏性结膜炎患者和正常对照组的睑板腺 | 数字病理学 | 过敏性结膜炎 | 红外线睑板腺成像 | 深度学习 | 图像 | 252只过敏性结膜炎患者的眼睛和200只正常对照组的眼睛 | NA | NA | NA | NA |
| 337 | 2025-01-23 |
MRI to digital medicine diagnosis: integrating deep learning into clinical decision-making for lumbar degenerative diseases
2024, Frontiers in surgery
IF:1.6Q2
DOI:10.3389/fsurg.2024.1424716
PMID:39834502
|
研究论文 | 本文开发了一种基于人工智能深度学习算法的智能系统,旨在通过识别腰椎磁共振图像(MRI)辅助诊断腰椎退行性疾病,并提高医生的临床效率 | 本文创新性地将PP-YOLOv2深度学习算法应用于腰椎MRI图像的自动识别,显著提高了诊断的准确性和效率 | 研究样本量相对较小,测试集仅包含50例病例,可能影响模型的泛化能力 | 开发一种基于深度学习的智能系统,辅助诊断腰椎退行性疾病 | 腰椎退行性疾病(腰椎间盘突出和腰椎滑脱) | 计算机视觉 | 腰椎退行性疾病 | 深度学习 | PP-YOLOv2 | 图像 | 654例患者(604例训练集,50例测试集) | NA | NA | NA | NA |
| 338 | 2025-01-23 |
Cardioattentionnet: advancing ECG beat characterization with a high-accuracy and portable deep learning model
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1473482
PMID:39834732
|
研究论文 | 本研究开发了一种名为CardioAttentionNet(CANet)的便携式深度学习模型,用于通过心电图(ECG)信号检测心律失常 | CANet结合了双向长短期记忆网络(BiLSTM)、多头注意力机制和深度可分离卷积,使其能够在便携设备上实现早期诊断,并在处理长ECG模式和详细特征提取方面表现出色 | 未提及具体局限性 | 提高心律失常的早期诊断准确性,改善患者预后 | 心电图(ECG)信号 | 机器学习 | 心血管疾病 | 深度学习 | BiLSTM, 多头注意力机制, 深度可分离卷积 | ECG信号 | 未提及具体样本数量 | NA | NA | NA | NA |
| 339 | 2025-01-23 |
Application of dynamic enhanced scanning with GD-EOB-DTPA MRI based on deep learning algorithm for lesion diagnosis in liver cancer patients
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1423549
PMID:39834934
|
研究论文 | 本研究应用基于深度学习的增强多梯度深度卷积神经网络(EMGDCNN)对Gd-EOB-DTPA增强MRI图像进行肝脏分割和局部肝脏病变的识别与分类 | 使用EMGDCNN模型同时进行肝脏病变的识别和分类,提高了诊断的准确性和效率 | 研究中存在25个假阳性和0.6个真阳性,检测能力仍需提高 | 提高Gd-EOB-DTPA增强MRI在肝脏病变诊断中的应用效果 | 132名参与者的Gd-EOB-DTPA增强MRI图像 | 数字病理 | 肝癌 | Gd-EOB-DTPA增强MRI | EMGDCNN | 图像 | 132名参与者 | NA | NA | NA | NA |
| 340 | 2025-01-23 |
Diagnostic accuracy of MRI-based radiomic features for EGFR mutation status in non-small cell lung cancer patients with brain metastases: a meta-analysis
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1428929
PMID:39834943
|
meta-analysis | 本文通过meta分析评估了基于MRI的放射组学特征在预测非小细胞肺癌脑转移患者EGFR突变状态中的诊断准确性 | 首次系统评估了MRI放射组学特征在非小细胞肺癌脑转移患者EGFR突变预测中的应用,并发现深度学习模型和亚洲地区研究具有更高的诊断准确性 | 研究间存在显著的异质性,诊断性能的变异性表明需要标准化的放射组学协议以提高可重复性和临床实用性 | 评估基于MRI的放射组学特征在预测非小细胞肺癌脑转移患者EGFR突变状态中的诊断准确性 | 非小细胞肺癌脑转移患者 | 数字病理学 | 肺癌 | MRI | 深度学习模型 | 图像 | 13项研究,涉及2,348名患者 | NA | NA | NA | NA |