深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1869 篇文献,本页显示第 541 - 560 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
541 2024-12-17
CISepsis: a causal inference framework for early sepsis detection
2024, Frontiers in cellular and infection microbiology IF:4.6Q1
研究论文 本文提出了一种基于因果推理的早期脓毒症检测方法,通过消除混杂因素的影响来提高模型的预测准确性 本文的创新点在于引入了因果推理框架,通过后门调整和工具变量方法消除混杂因素的影响,从而更准确地捕捉脓毒症的因果关系 本文的局限性在于未来研究需要进一步探索特定指标或治疗干预对脓毒症的影响,并验证该方法在临床应用中的潜力 本文的研究目的是提高早期脓毒症检测的准确性,增强模型的泛化能力、鲁棒性和可解释性 本文的研究对象是脓毒症的早期预测 机器学习 脓毒症 因果推理 NA 结构化数据和非结构化数据 使用了MIMIC-IV数据集 NA NA NA NA
542 2024-12-16
AutoTransOP: translating omics signatures without orthologue requirements using deep learning
2024-Jan-29, NPJ systems biology and applications IF:3.5Q1
研究论文 本文开发了一种名为AutoTransOP的神经网络自编码器框架,用于将指定物种或细胞环境的组学数据映射到全局潜在空间,从而在不要求匹配直系同源物的情况下识别相关信息 创新点在于提出了AutoTransOP框架,能够在不要求直系同源物匹配的情况下,将不同物种或细胞环境的组学数据映射到全局潜在空间,并识别相关信息 NA 开发一种能够在不要求直系同源物匹配的情况下,将不同物种或细胞环境的组学数据映射到全局潜在空间的方法 不同物种或细胞环境的组学数据 机器学习 NA 深度学习 神经网络自编码器 组学数据 NA NA NA NA NA
543 2024-12-15
Deploying artificial intelligence software in an NHS trust: a how-to guide for clinicians
2024-Jan-23, The British journal of radiology
研究论文 本文为临床医生提供了在NHS信托中部署人工智能软件的实用指南 本文提供了关于在医疗环境中选择和部署新软件的实际指导,填补了现有指南的空白 本文主要关注胸部X光(CXR)解释的深度学习算法,可能不适用于其他类型的AI软件 提供在NHS信托中部署人工智能软件的实用指南,以促进AI技术在医疗领域的应用 NHS信托中的临床医生和医疗人员 机器学习 NA 深度学习算法 深度学习 图像 NA NA NA NA NA
544 2024-12-15
Deep learning for tooth identification and numbering on dental radiography: a systematic review and meta-analysis
2024-Jan-11, Dento maxillo facial radiology
综述 本文系统回顾和荟萃分析了深度学习在牙科放射图像中牙齿识别和编号的应用 深度学习模型在牙齿识别和编号方面表现出高精度和高准确性,能够增强复杂的自动化流程 研究仅包括了29篇符合条件的文献,可能存在选择偏倚 评估深度学习在牙科放射图像中牙齿识别和编号的应用效果 人类牙科放射图像中的牙齿识别和编号 计算机视觉 NA 深度学习 CNN 图像 29项研究 NA NA NA NA
545 2024-12-15
Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages
2024-Jan-11, Dento maxillo facial radiology
研究论文 本研究评估了使用深度学习方法在全景X光片上进行计算机辅助牙周分类骨丢失分期的准确性,并比较了不同模型和层的表现 本研究开发了一种新的基于DenseNet121 + GAP + mRMR的支持向量机模型,该模型在牙周骨丢失分类中表现优于其他模型,能够从原始图像中检测有效特征,无需手动选择 NA 评估深度学习方法在全景X光片上进行牙周分类骨丢失分期的准确性 全景X光片上的牙周骨丢失分期 计算机视觉 牙周病 深度学习 CNN 图像 2533张全景X光片,包括721张健康组,842张Stage1/2组,970张Stage3/4组 NA NA NA NA
546 2024-12-15
Automatic detection of posterior superior alveolar artery in dental cone-beam CT images using a deeply supervised multi-scale 3D network
2024-Jan-11, Dento maxillo facial radiology
研究论文 本研究开发了一种用于在牙科锥形束CT图像中自动检测后上牙槽动脉的深度监督多尺度3D网络 提出了多尺度深度监督的3D U-Net网络(3D U-Net MSDS),显著提高了后上牙槽动脉中心像素的定位精度 研究仅在150名受试者的数据上进行验证,样本量相对较小,可能影响模型的泛化能力 开发一种鲁棒且准确的深度学习网络,用于在牙科锥形束CT图像中检测后上牙槽动脉 后上牙槽动脉在牙科锥形束CT图像中的中心像素定位 计算机视觉 NA 深度学习 3D U-Net MSDS 图像 150名受试者的牙科锥形束CT数据 NA NA NA NA
547 2024-12-15
Coupled intelligent prediction model for medium- to long-term runoff based on teleconnection factors selection and spatial-temporal analysis
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于遥相关因子选择和时空分析的耦合智能预测模型,用于中长期径流预测 本文创新性地结合了随机森林(RF)、支持向量回归(SVR)和多层感知器回归(MLPR),开发了两种耦合智能预测模型(RF-SVR和RF-MLPR),以提高预测精度和泛化能力 预测精度随着预测周期的延长而下降,表明长期预测由于不确定性增加和影响因素的累积而更具挑战性 提高中长期径流预测的准确性,为洪水控制、干旱缓解、水资源综合管理和生态恢复提供支持 雅砻江流域(YLRB)的中长期径流 水文学 NA 随机森林(RF)、支持向量回归(SVR)、多层感知器回归(MLPR) 耦合模型(RF-SVR和RF-MLPR) 径流数据 四个水文站点的数据 NA NA NA NA
548 2024-12-15
AMCFCN: attentive multi-view contrastive fusion clustering net
2024, PeerJ. Computer science
研究论文 本文提出了一种名为AMCFCN的新型多视图聚类网络,通过对比注意策略有效提取多视图数据中的鲁棒特征 引入了对比注意策略,能够在减少噪声的同时保留视图完整性,并提取一致的多视图表示 未提及具体限制 改进多视图聚类技术,提高聚类结果的准确性 多视图数据中的视图特定表示和一致表示 机器学习 NA 多视图聚类 AMCFCN 多视图数据 四个多视图数据集 NA NA NA NA
549 2024-12-15
Detection of renal cell hydronephrosis in ultrasound kidney images: a study on the efficacy of deep convolutional neural networks
2024, PeerJ. Computer science
研究论文 本研究探讨了深度卷积神经网络在超声肾脏图像中自动检测肾细胞肾积水的有效性 提出了创新的Novel DCNN模型,在肾细胞肾积水检测中表现出色,准确率达到99.8% 需要进一步探索更大和更多样化的数据集以及不同的优化策略来提升模型的收敛率和准确性 利用深度学习模型自动检测超声图像中的肾细胞肾积水 超声肾脏图像中的肾细胞肾积水 计算机视觉 肾脏疾病 深度学习 DCNN 图像 NA NA NA NA NA
550 2024-12-15
Double-target self-supervised clustering with multi-feature fusion for medical question texts
2024, PeerJ. Computer science
研究论文 本文提出了一种双目标自监督聚类与多特征融合的方法,用于医疗问题文本的聚类 本文创新性地融合了词频和词汇语义信息,并引入了自注意力机制来计算文本中每个词的权重,同时构建了两个目标函数来实现跨文档主题特征的融合 NA 构建一个端到端的文本聚类模型,以更好地表示医疗问题文本的信息 医疗领域中的问题文本 自然语言处理 NA 自监督学习 自注意力机制 文本 NA NA NA NA NA
551 2024-12-15
Deep ocular tumor classification model using cuckoo search algorithm and Caputo fractional gradient descent
2024, PeerJ. Computer science
研究论文 本研究提出了一种结合Caputo分数梯度下降和布谷鸟搜索算法的优化器,用于提高眼肿瘤分类的准确性和收敛速度 创新点在于将Caputo分数梯度下降方法与布谷鸟搜索算法结合,提出了一种新的优化器,显著提高了分类准确性和收敛速度 研究仅使用了400张眼底图像进行训练和评估,样本量相对较小,可能影响模型的泛化能力 旨在开发一种用于眼肿瘤分类的鲁棒深度学习系统,并提出一种新的优化器以提高分类性能 研究对象为眼底图像中的良性和恶性眼肿瘤 计算机视觉 NA 深度学习 CNN 图像 400张眼底图像,分为良性和恶性两类 NA NA NA NA
552 2024-12-15
Automated generation of process simulation scenarios from declarative control-flow changes
2024, PeerJ. Computer science
研究论文 本文提出了一种自动化生成业务流程模拟场景的方法,允许用户以声明方式指定控制流变化,并自动生成假设场景 本文的创新点在于使用生成式深度学习模型来自动生成符合用户指定控制流变化的模拟场景,从而简化了手动调整模拟模型的复杂性 本文的局限性在于数据驱动模拟方法在追求准确性时可能生成过于复杂的模型,增加了手动调整的难度 本文的研究目的是简化业务流程模拟中手动调整模拟模型的复杂性,特别是涉及控制流变化的场景 本文的研究对象是业务流程模拟模型及其在控制流变化下的调整 机器学习 NA 生成式深度学习模型 生成式深度学习模型 事件日志 NA NA NA NA NA
553 2024-12-15
Deep learning-based information retrieval with normalized dominant feature subset and weighted vector model
2024, PeerJ. Computer science
研究论文 本文提出了一种基于深度学习的信息检索方法,使用归一化主导特征子集和加权向量模型进行特征提取和选择 提出了归一化主导特征子集和加权向量模型(NDFS-WVM),用于从大数据中进行信息检索,并展示了其在文本检索中的优越性能 需要大规模数据集进行训练,且手动创建有效特征集的过程较为耗时 改进信息检索中的特征提取和选择方法,提高文本检索的准确性 多媒体数据中的文本信息 自然语言处理 NA 深度学习 NDFS-WVM 文本 大规模数据集,包含数百万变量 NA NA NA NA
554 2024-12-15
Performance enhancement in hydroponic and soil compound prediction by deep learning techniques
2024, PeerJ. Computer science
研究论文 本文提出了一种利用深度学习技术预测水培和土壤化合物动态的创新方法,以提高作物生产的可持续性和效率 本文创新性地利用深度学习技术预测水培和土壤化合物动态,采用迭代辅助增强母优化算法(IEMOA)获取权重特征,并通过多尺度特征融合卷积自编码器与门控循环单元(MS-CAGRU)网络进行预测 本文未提及具体的实验验证或实际应用效果,仅通过与传统模型的对比展示系统效能 开发数值模型以全面描述植物和土壤中化学物质的传输和反应,制定有效的缓解策略 水培和土壤化合物动态 机器学习 NA 深度学习 MS-CAGRU 数据 数据来自在线资源,具体样本量未提及 NA NA NA NA
555 2024-12-15
Demand prediction for urban air mobility using deep learning
2024, PeerJ. Computer science
研究论文 本文研究了城市空中交通(UAM)需求预测问题,提出了一种基于深度学习的时间序列预测模型 本文首次使用Transformer模型进行UAM需求预测,并展示了其高性能 本文仅使用了单一的基准数据集,可能无法全面反映不同城市和地区的实际情况 探讨市场是否能够支持UAM的部署,并通过需求预测为决策者提供投资可行性和可行性分析 城市空中交通(UAM)的需求预测 机器学习 NA 深度学习 Transformer 时间序列数据 150,000条记录 NA NA NA NA
556 2024-12-15
A bigura-based real time sentiment analysis of new media
2024, PeerJ. Computer science
研究论文 本文提出了一种基于BiGura多层模型的实时情感检测技术,用于新媒体数据的情感分析 本文采用了深度学习技术,相较于传统的贝叶斯和KNN分类器,在情感分析中表现出显著优势,分类准确率分别提高了3.88%和4.33% NA 实现更准确和实时的公众情感监测和舆论监控 新媒体数据中的文本和视频内容的情感分析 自然语言处理 NA 深度学习 BiGura 文本和视频 涉及不同病毒事件的案例,如加沙的入侵事件 NA NA NA NA
557 2024-12-15
LRMAHpan: a novel tool for multi-allelic HLA presentation prediction using Resnet-based and LSTM-based neural networks
2024, Frontiers in immunology IF:5.7Q1
研究论文 本文介绍了一种名为LRMAHpan的新工具,用于使用基于Resnet和LSTM的神经网络进行多等位基因HLA呈递预测 LRMAHpan整合了LSTM网络和ResNet_CA网络,采用了一种新的pHLA编码方法,能够将新抗原预测任务集成到计算机视觉方法中,并有效捕捉结合信号 NA 开发一种能够准确预测多等位基因HLA呈递的工具,以促进新抗原疫苗设计 多等位基因HLA呈递预测和新抗原预测 计算机视觉 黑色素瘤 质谱数据 ResNet, LSTM 图像 转移性黑色素瘤患者队列 NA NA NA NA
558 2024-12-15
Explainable light-weight deep learning pipeline for improved drought stress identification
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种用于识别马铃薯作物干旱胁迫的可解释轻量级深度学习管道 创新点在于结合预训练网络与精心设计的自定义层,并集成了基于梯度的可视化技术(如Grad-CAM),增强了模型的可解释性 NA 旨在提高作物干旱胁迫的识别精度,并为实时农业应用提供可解释的深度学习模型 马铃薯作物的干旱胁迫 计算机视觉 NA 深度学习 DenseNet121 图像 NA NA NA NA NA
559 2024-12-14
Deep learning for automated segmentation in radiotherapy: a narrative review
2024-Jan-23, The British journal of radiology
综述 本文对深度学习技术在放射治疗计划中的自动分割应用进行了描述性综述 本文总结了U-net作为最常用的卷积神经网络架构在放射治疗计划中的应用 大多数研究缺乏外部验证,且缺乏统一的评估指标 探讨深度学习技术在放射治疗计划中自动分割的应用 脑部、头颈部、肺部、腹部和盆腔癌症的图像分割 机器学习 NA 深度学习 卷积神经网络(CNN) 图像 涉及多个临床子站点,但具体样本量未提及 NA NA NA NA
560 2024-12-14
Unveiling the economic potential of sports industry in China: A data driven analysis
2024, PloS one IF:2.9Q1
研究论文 本文通过采用深度学习算法和数据挖掘方法,分析了中国体育产业的经济动态,并提出了一个专门的经济模型来量化其经济效益 本文首次采用深度学习和数据挖掘技术构建了一个经济模拟框架,专门针对体育产业的复杂动态 NA 填补体育产业经济效益量化方面的研究空白 中国体育产业的经济动态 机器学习 NA 数据挖掘 深度学习算法 数据 2012年至2022年的体育产业数据 NA NA NA NA
回到顶部