深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1879 篇文献,本页显示第 741 - 760 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
741 2024-11-26
Artificial intelligence in predicting pathogenic microorganisms' antimicrobial resistance: challenges, progress, and prospects
2024, Frontiers in cellular and infection microbiology IF:4.6Q1
综述 本文综述了人工智能和机器学习技术在预测病原微生物抗菌药物耐药性方面的最新进展 介绍了支持向量机、随机森林和深度学习网络等主要AI和ML模型在耐药性预测中的应用 讨论了数据可用性、模型可解释性和跨物种耐药性预测等主要挑战 探讨通过算法优化、数据集扩展和跨学科合作来研究微生物耐药性的新视角和解决方案 病原微生物的抗菌药物耐药性 机器学习 NA 人工智能 (AI) 和机器学习 (ML) 支持向量机、随机森林、深度学习网络 生物医学数据 NA NA NA NA NA
742 2024-11-26
Predicting Immune Checkpoint Inhibitor-Related Pneumonitis via Computed Tomography and Whole-Lung Analysis Deep Learning
2024, Current medical imaging IF:1.1Q3
研究论文 本文提出了一种基于计算机断层扫描(CT)图像和深度学习的全肺分析模型,用于预测免疫检查点抑制剂相关性肺炎(ICI-P)的风险 本文提出了一种新颖的全肺分析深度学习模型,结合了密集连接卷积网络(DenseNet)和特征金字塔网络(FPN),能够自动挖掘CT图像中的全局肺部信息,无需手动标注图像 NA 预测免疫检查点抑制剂相关性肺炎(ICI-P)的个体化风险,以辅助个性化免疫治疗计划 免疫检查点抑制剂相关性肺炎(ICI-P)的风险预测 计算机视觉 肺部疾病 深度学习 DenseNet 和 FPN 结合的深度学习模型 CT图像 157名患者 NA NA NA NA
743 2024-11-26
Erratum: Bioinformatic analysis reveals the association between bacterial morphology and antibiotic resistance using light microscopy with deep learning
2024, Frontiers in microbiology IF:4.0Q2
correction NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
744 2024-11-24
Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning based motor imagery classification for brain computer interface
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于增强的Harris Hawks Shuffled Shepherd优化和深度学习的运动想象分类方法,用于脑机接口 本文创新性地结合了Harris Hawks Shuffled Shepherd优化算法和深度学习技术,用于运动想象分类,显著提高了分类准确率 NA 提高脑机接口中运动想象分类的准确性,增强与外部设备的通信和控制能力 运动想象分类在脑机接口中的应用 机器学习 NA 深度学习 卷积自动编码器 (CAE) 脑电图 (EEG) BCIC-III和BCIC-IV数据集 NA NA NA NA
745 2024-11-24
FDCN-C: A deep learning model based on frequency enhancement, deformable convolution network, and crop module for electroencephalography motor imagery classification
2024, PloS one IF:2.9Q1
研究论文 提出了一种基于频率增强、可变形卷积网络和裁剪模块的深度学习模型FDCN-C,用于脑电图运动想象分类 创新设计了频率增强模块,利用连续时间尺度的卷积核提取不同频段的特征,并通过注意力机制筛选并整合到原始脑电数据中;采用可变形卷积网络增强时间特征提取能力,利用偏移参数调节卷积核大小;设计了一维卷积层整合所有通道信息;使用扩张卷积形成裁剪分类模块,多次计算脑电数据的多样化感受野 未提及 提高脑电图运动想象分类的准确性 脑电图运动想象分类 机器学习 NA 深度学习 卷积神经网络 脑电图 使用了两个公开数据集进行验证 NA NA NA NA
746 2024-11-24
Towards efficient IoT communication for smart agriculture: A deep learning framework
2024, PloS one IF:2.9Q1
研究论文 本文研究了智能农业中物联网通信的优化,提出了一种提高数据传输效率的完整策略 本文提出了结合拉格朗日优化和深度卷积神经网络(DCNN)的模型,旨在最大化能源效率和数据吞吐量 NA 优化智能农业生态系统中的数据传输效率 物联网传感器与中央控制系统之间的通信距离 机器学习 NA 深度学习 深度卷积神经网络(DCNN) 传感器数据(温度、湿度、土壤湿度) NA NA NA NA NA
747 2024-11-24
High security and privacy protection model for STI/HIV risk prediction
2024 Jan-Dec, Digital health IF:2.9Q2
研究论文 本文提出了一种结合联邦学习和同态加密的高安全性隐私保护模型,用于性传播感染和艾滋病的风险预测 本文创新性地将联邦学习和同态加密结合,用于在保护隐私的前提下进行性传播感染和艾滋病的风险预测 NA 提高性传播感染和艾滋病风险预测模型的性能,同时保护患者敏感信息 性传播感染和艾滋病的风险预测 机器学习 性传播感染 联邦学习、同态加密 深度学习模型 文本 168,459条数据,来自八个国家,2013年至2018年收集 NA NA NA NA
748 2024-11-24
Enhanced skin cancer diagnosis through grid search algorithm-optimized deep learning models for skin lesion analysis
2024, Frontiers in medicine IF:3.1Q1
研究论文 本研究通过网格搜索算法优化的深度学习模型,提出了一种增强皮肤癌诊断的方法 本研究引入了网格搜索优化技术来确定卷积神经网络模型的最优超参数,提高了皮肤病变识别的准确性 NA 开发一个能够准确诊断皮肤病变的卷积神经网络系统 皮肤病变图像的分类和诊断 计算机视觉 皮肤癌 深度学习 卷积神经网络 图像 使用了来自国际皮肤成像协作组织(ISIC)档案的三个数据集 NA NA NA NA
749 2024-11-24
Implementation and evaluation of the three action teaching model with learning plan guidance in preventive medicine course
2024, Frontiers in psychology IF:2.6Q2
研究论文 评估三动作教学模型与学习计划指导在预防医学课程中的实施效果 引入了一种结合三动作教学模型与学习计划指导的新型教学方法 NA 评估新型教学方法在预防医学课程中的有效性 预防医学课程的学生 NA NA NA NA NA 实验组47人,对照组48人 NA NA NA NA
750 2024-11-24
Artificial intelligence-assisted delineation for postoperative radiotherapy in patients with lung cancer: a prospective, multi-center, cohort study
2024, Frontiers in oncology IF:3.5Q2
研究论文 评估深度学习自动分割模型在辅助肺癌术后放疗中临床靶体积和危及器官勾画中的临床效用 提出了一种基于深度学习的自动分割模型,用于辅助肺癌术后放疗中的临床靶体积和危及器官的勾画,并显著提高了勾画精度和效率 NA 评估AI辅助勾画在肺癌术后放疗中的临床效用,并比较其与手动勾画的准确性和效率 肺癌术后放疗患者的临床靶体积和危及器官 计算机视觉 肺癌 深度学习 CNN 图像 55名患者 NA NA NA NA
751 2024-11-24
Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities
2024, Frontiers in oncology IF:3.5Q2
综述 本文综述了人工智能在膀胱癌诊断和治疗中的应用,指出了当前的挑战并展望了未来的发展 本文探讨了人工智能技术如深度学习和机器学习在提高膀胱癌诊断速度和准确性方面的应用,并提供了更强大的治疗选择和预后建议 由于训练信息来源和算法设计的差异,人工智能在临床实践中的准确性和透明度仍有待提高 探讨人工智能在膀胱癌诊断和治疗中的应用及其未来发展 膀胱癌的诊断和治疗 机器学习 膀胱癌 深度学习 NA 影像数据 NA NA NA NA NA
752 2024-11-23
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques
2024, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文介绍了一种利用长短期记忆深度学习模型来实时监控和缓解工业环境中异常情况的创新方法 本文提出的模型在检测异常方面具有高精度,并能自动提出或实施补救措施,显著提高了操作效率 NA 提高工业机械操作的效率和可持续性 工业环境中的异常检测和缓解 机器学习 NA 深度学习 长短期记忆(LSTM) 数据 NA NA NA NA NA
753 2024-11-23
Diagnostic performance of artificial intelligence in detecting oral potentially malignant disorders and oral cancer using medical diagnostic imaging: a systematic review and meta-analysis
2024, Frontiers in oral health IF:3.0Q1
meta-analysis 本文通过系统综述和荟萃分析评估了人工智能在医学诊断影像中检测口腔潜在恶性病变和口腔癌的诊断性能 本文首次系统性地评估了AI算法在口腔癌检测中的诊断准确性,并发现深度学习架构,特别是卷积神经网络,在检测口腔潜在恶性病变和口腔癌方面表现出色 本文仅评估了已发表的研究,可能存在发表偏倚;此外,研究间的异质性较大,可能影响结果的普适性 评估AI驱动的诊断方法在医学影像中检测口腔潜在恶性病变和口腔癌的诊断准确性 口腔潜在恶性病变和口腔癌 machine learning 口腔癌 NA CNN image 筛选了296篇文章,包括55项研究进行定性综合,选择了18项研究进行荟萃分析 NA NA NA NA
754 2024-11-23
A transformer-based deep learning model for identifying the occurrence of acute hematogenous osteomyelitis and predicting blood culture results
2024, Frontiers in microbiology IF:4.0Q2
研究论文 本文开发了一种基于Transformer的深度学习模型,用于识别急性血源性骨髓炎的发生并预测血培养结果 本文首次将Transformer模型应用于急性血源性骨髓炎的识别和血培养结果的预测 本文仅分析了实验室指标与骨髓炎及其相关诊断的关系,未考虑其他可能影响因素 开发一种能够有效识别急性血源性骨髓炎并预测血培养结果的深度学习模型 18岁以下的急性血源性骨髓炎患者及其血培养结果 机器学习 骨髓炎 Transformer Transformer 实验室指标 634名18岁以下患者 NA NA NA NA
755 2024-11-23
Compare three deep learning-based artificial intelligence models for classification of calcified lumbar disc herniation: a multicenter diagnostic study
2024, Frontiers in surgery IF:1.6Q2
研究论文 本文比较了三种基于深度学习的人工智能模型在钙化性腰椎间盘突出分类中的应用 本文开发并验证了一种基于侧位腰椎磁共振成像的人工智能诊断模型,用于识别钙化性腰椎间盘突出 研究时间跨度较长,且仅限于特定类型的腰椎间盘突出 开发和验证一种用于识别钙化性腰椎间盘突出的人工智能诊断模型 钙化性腰椎间盘突出患者 计算机视觉 腰椎间盘突出 深度学习 ResNet-34 图像 1224名患者,包括610名男性和614名女性,平均年龄53.34 ± 10.61岁 NA NA NA NA
756 2024-11-23
Construction of a 2.5D Deep Learning Model for Predicting Early Postoperative Recurrence of Hepatocellular Carcinoma Using Multi-View and Multi-Phase CT Images
2024, Journal of hepatocellular carcinoma IF:4.2Q2
研究论文 构建了一个基于2.5D深度学习模型的CT影像,用于预测肝细胞癌术后早期复发 提出了一个2.5D深度学习模型,结合多视角和多相位CT影像,用于预测肝细胞癌术后早期复发 3D深度学习模型在内部和外部验证集上表现不佳,表明存在过拟合问题 构建一个基于2.5D深度学习模型的CT影像,用于预测肝细胞癌术后早期复发 肝细胞癌术后早期复发的预测 机器学习 肝癌 深度学习 2.5D深度学习模型 CT影像 232名患者用于训练和内部验证,91名患者用于外部验证 NA NA NA NA
757 2024-11-23
Large Language Models in Neurosurgery
2024, Advances in experimental medicine and biology
研究论文 本文探讨了大型语言模型(LLM)在神经外科中的应用及其潜在的优缺点 本文首次详细讨论了大型语言模型在神经外科领域的应用,特别是ChatGPT在生成手术报告和手术笔记方面的潜力 本文未详细讨论大型语言模型在实际应用中可能遇到的伦理和技术挑战 探讨大型语言模型在神经外科中的应用及其潜在影响 大型语言模型(如ChatGPT)在神经外科中的应用 自然语言处理 NA 深度学习 Transformer 文本 NA NA NA NA NA
758 2024-11-23
Navigating Mathematical Basics: A Primer for Deep Learning in Science
2024, Advances in experimental medicine and biology
研究论文 本文提供了一个简明的数学基础介绍,旨在帮助科学家理解深度学习中的基本数学符号 本文的创新之处在于将数学基础与深度学习原理相结合,为非数学背景的读者提供了一个快速入门的途径 由于篇幅限制,本文无法替代需要多门课程和多年时间才能巩固的扎实数学知识 本文的研究目的是帮助非数学背景的读者克服阅读使用数学符号的深度学习文本时的障碍 本文主要研究对象是深度学习中的基本数学符号和模型 机器学习 NA NA 全连接前馈深度神经网络 NA NA NA NA NA NA
759 2024-11-23
Machine and Deep Learning in Hyperspectral Fluorescence-Guided Brain Tumor Surgery
2024, Advances in experimental medicine and biology
研究论文 本文探讨了在荧光引导的脑肿瘤手术中使用机器学习和深度学习方法处理高光谱成像数据的过程 本文结合了机器学习和深度学习方法,提出了一种新的流程,用于从离体高光谱荧光图像中提取和处理相关发射光谱,并使用多种机器学习模型对脑肿瘤进行分类 本文的研究结果主要基于离体数据,尚未在临床环境中验证其有效性 旨在改进荧光引导的脑肿瘤手术中对肿瘤边缘的识别和分类 脑肿瘤及其边缘组织 机器学习 脑肿瘤 高光谱成像 机器学习模型 图像 NA NA NA NA NA
760 2024-11-22
Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing
2024-01-02, Nature communications IF:14.7Q1
研究论文 本文介绍了一种名为Spectralis的从头肽测序方法,利用深度学习技术进行碎片离子系列分类,显著提高了肽测序的精确度和灵敏度 Spectralis方法引入了卷积神经网络层连接光谱中按氨基酸质量间隔的峰值,提出了碎片离子系列分类作为从头肽测序的关键任务,并引入了肽-光谱置信度评分 NA 开发一种高精度、高灵敏度的从头肽测序方法,以解决蛋白质测序领域的不足 肽序列的从头测序 机器学习 NA NA 卷积神经网络(CNN) 光谱数据 NA NA NA NA NA
回到顶部