本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
781 | 2024-09-13 |
Reference-Based Multi-Stage Progressive Restoration for Multi-Degraded Images
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3451939
PMID:39236125
|
研究论文 | 本文提出了一种基于参考图像的多阶段渐进式图像恢复方法,用于处理多重退化的图像 | 本文创新性地提出了Reference-based Image Restoration Transformer (Ref-IRT)模型,通过三个主要阶段逐步恢复图像细节,并引入了质量退化恢复方法和纹理转移/重建网络来增强恢复效果 | NA | 研究如何通过深度学习技术有效恢复多重退化图像的高质量细节 | 多重退化的图像 | 计算机视觉 | NA | 深度学习 | Transformer | 图像 | 在三个基准数据集上进行了实验 |
782 | 2024-09-13 |
Smartphone region-wise image indoor localization using deep learning for indoor tourist attraction
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0307569
PMID:39250439
|
研究论文 | 本文提出了一种利用深度学习技术通过智能手机图像进行室内旅游景点区域定位的方法 | 该方法无需基础设施投资,降低了将博物馆和海洋馆转变为智能场所的成本和时间 | 研究仅在巴西的一个实际场景中进行了评估,可能需要进一步验证其在其他地区的效果 | 开发一种适用于室内旅游景点的智能手机图像区域定位技术 | 智能手机拍摄的图像和室内旅游景点的位置分类 | 计算机视觉 | NA | 深度学习 | 神经网络(包括基于Transformer的模型) | 图像 | 3654张图像,来自10种不同智能手机 |
783 | 2024-09-13 |
Innovation in public health surveillance for social distancing during the COVID-19 pandemic: A deep learning and object detection based novel approach
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0308460
PMID:39250511
|
研究论文 | 本文提出了一种基于深度学习和目标检测的公共健康监测新方法,用于在COVID-19疫情期间监控社交距离 | 采用YOLOv4模型和无人机实时视频数据,实现了高效的社交距离监控,准确率达到82% | NA | 开发一种创新的公共健康监测方法,以应对COVID-19疫情期间的社交距离问题 | 社交距离的监控和违规行为的检测 | 计算机视觉 | COVID-19 | 目标检测 | YOLOv4 | 视频 | 使用无人机实时流式传输的25fps、1920 X 1080分辨率视频数据,监控范围为35米 |
784 | 2024-09-13 |
Deep learning for detecting prenatal alcohol exposure in pediatric brain MRI: a transfer learning approach with explainability insights
2024, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2024.1434421
PMID:39252695
|
研究论文 | 本文利用深度学习技术,通过迁移学习方法检测儿童脑部MRI中的产前酒精暴露(PAE),并进行了可解释性分析 | 本文首次将深度学习应用于检测儿童脑部MRI中的产前酒精暴露,并采用迁移学习方法和可解释性分析来提高模型的性能和透明度 | 由于儿童脑部快速发育、运动伪影和数据不足等问题,构建适用于儿童群体的深度学习模型存在挑战 | 研究如何利用深度学习和迁移学习方法检测儿童脑部MRI中的产前酒精暴露,并进行可解释性分析 | 2至8岁儿童的T1加权结构脑部MRI扫描数据 | 计算机视觉 | NA | 深度学习 | 简单全卷积网络(SFCN) | 图像 | 涉及2至8岁儿童的脑部MRI扫描数据,具体样本数量未明确提及 |
785 | 2024-09-13 |
High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0244
PMID:39252878
|
研究论文 | 本研究利用无人机遥感和深度学习模型对大豆生物量相关性状进行高通量表型分析 | 首次结合无人机遥感和深度学习模型进行大豆生物量相关性状的高通量表型分析,并提取潜在特征用于基因组预测 | 研究仅在2018年进行了一次田间试验,样本量有限,且仅在干旱和对照两种灌溉条件下进行 | 开发模型以利用无人机遥感和深度学习模型估计大豆生物量相关性状的表型值 | 大豆生物量相关性状,包括干重、主茎长度、节点和分支数量以及植株高度 | 计算机视觉 | NA | 无人机遥感 | 卷积神经网络(CNN) | 图像 | 198个已知全基因组序列的大豆种质 |
786 | 2024-09-13 |
Choroidal Optical Coherence Tomography Angiography: Noninvasive Choroidal Vessel Analysis via Deep Learning
2024, Health data science
DOI:10.34133/hds.0170
PMID:39257642
|
研究论文 | 本文提出了一种基于深度学习的非侵入性脉络膜血管分析方法,通过光学相干断层扫描血管造影(OCTA)技术,实现对脉络膜亚层的血管分布评估 | 本文提出了一种新的脉络膜血管造影策略,并采用了一种集成判别均值教师结构来处理跨域分割任务中的特定问题 | 本文的实验结果主要基于特定的疾病样本,未来需要进一步验证其在更广泛疾病类型中的适用性 | 开发一种非侵入性的方法来评估脉络膜亚层的血管分布,支持脉络膜疾病的临床分析 | 脉络膜亚层的血管分布 | 计算机视觉 | NA | 光学相干断层扫描血管造影(OCTA) | 集成判别均值教师结构 | 图像 | NA |
787 | 2024-09-11 |
MRGM: an enhanced catalog of mouse gut microbial genomes substantially broadening taxonomic and functional landscapes
2024 Jan-Dec, Gut microbes
IF:12.2Q1
DOI:10.1080/19490976.2024.2393791
PMID:39230075
|
研究论文 | 本文介绍了一种增强版的鼠肠道微生物基因组目录MRGM,显著扩展了分类和功能范围 | MRGM包含了42,245个非冗余的鼠肠道细菌基因组,覆盖1,524个物种,通过改进的基因组质量评估技术,捕捉到先前未被充分代表的谱系,并使用深度学习将基因本体注释率提高了18倍 | NA | 增强鼠肠道微生物组研究的转化价值,提供详细的鼠肠道微生物基因组目录 | 鼠肠道微生物组 | NA | NA | 深度学习 | NA | 基因组 | 42,245个非冗余的鼠肠道细菌基因组,覆盖1,524个物种 |
788 | 2024-09-11 |
Deep learning model shows pathologist-level detection of sentinel node metastasis of melanoma and intra-nodal nevi on whole slide images
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1418013
PMID:39238597
|
研究论文 | 本文研究了深度学习模型在检测黑色素瘤前哨淋巴结转移和结内痣方面的能力 | 深度学习模型在检测黑色素瘤前哨淋巴结转移方面达到了病理学家水平,并能区分结内痣和转移 | 需要进一步验证 | 评估人工智能在检测黑色素瘤前哨淋巴结转移和结内痣方面的能力 | 黑色素瘤前哨淋巴结转移和结内痣 | 数字病理学 | 黑色素瘤 | 深度学习 | 深度学习模型 | 图像 | 485张全切片图像,包括196个前哨淋巴结活检样本 |
789 | 2024-09-11 |
A Deep Learning Based Intelligent Decision Support System for Automatic Detection of Brain Tumor
2024, Biomedical engineering and computational biology
IF:2.3Q3
DOI:10.1177/11795972241277322
PMID:39238891
|
研究论文 | 本文提出了一种基于深度学习的智能决策支持系统,用于自动检测脑肿瘤 | 本文采用了从零开始构建的卷积神经网络(CNN)和迁移学习模型(VGG-16、VGG-19、LeNet-5),并通过数据增强和超参数调优来提高检测精度 | NA | 开发一种能够自动检测脑肿瘤的智能决策支持系统,以辅助医疗从业者进行诊断 | 脑肿瘤的自动检测 | 计算机视觉 | 脑肿瘤 | 卷积神经网络(CNN) | 卷积神经网络(CNN) | 图像 | 大量脑部图像数据 |
790 | 2024-09-11 |
RT-DETR-SoilCuc: detection method for cucumber germinationinsoil based environment
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1425103
PMID:39239193
|
研究论文 | 本文提出了一种基于RT-DETR的黄瓜发芽检测方法,适用于土壤环境 | 设计了一种轻量级的实时黄瓜发芽检测模型,通过引入在线图像增强、Adown下采样操作符、广义高效轻量网络、在线卷积重参数化机制和归一化高斯Wasserstein距离损失函数,提高了模型的训练效果和轻量化程度 | NA | 解决现有深度学习种子发芽检测技术在复杂土壤环境中识别准确率下降的问题 | 黄瓜发芽过程 | 计算机视觉 | NA | Real-Time DEtection TRansformer (RT-DETR) | RT-DETR-SoilCuc | 图像 | 不同盐浓度压力下的黄瓜发芽实验 |
791 | 2024-09-11 |
Modeling of SPM-GRU ping-pong ball trajectory prediction incorporating YOLOv4-Tiny algorithm
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0306483
PMID:39240792
|
研究论文 | 研究通过先进的计算机视觉和深度学习技术提高乒乓球轨迹预测的准确性,实现实时准确的乒乓球位置和运动轨迹跟踪 | 结合物理模型和深度学习方法,创新性地应用微型第四代实时目标检测算法与门控循环单元于乒乓球运动分析 | NA | 提高乒乓球轨迹预测的准确性 | 乒乓球的运动轨迹 | 计算机视觉 | NA | YOLOv4-Tiny算法 | 门控循环单元(GRU) | 图像 | NA |
792 | 2024-09-11 |
Evaluation of influencing factors of China university teaching quality based on fuzzy logic and deep learning technology
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0303613
PMID:39240954
|
研究论文 | 本文基于模糊逻辑和深度学习技术,评估了中国大学教学质量的影响因素 | 本文提出了一种结合模糊逻辑和深度学习的评估模型,使用顺序直觉模糊(SIF)辅助长短期记忆(LSTM)模型来精确测量教学质量 | NA | 评估和提升大学教学质量 | 大学教学质量的影响因素 | 机器学习 | NA | 模糊逻辑,深度学习 | LSTM | 问卷调查数据 | 60多名教师和学生的开放式问卷调查 |
793 | 2024-09-11 |
Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning technique
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0304995
PMID:39240975
|
研究论文 | 本文使用基于DenseNet-201的深度迁移学习技术对阿尔茨海默病进行分类 | 提出了基于DenseNet-201的迁移学习方法,显著提高了阿尔茨海默病分类的准确率 | NA | 开发一种高准确率的阿尔茨海默病分类方法 | 阿尔茨海默病的不同阶段(非痴呆、中度痴呆、轻度痴呆、非常轻度痴呆和重度痴呆) | 计算机视觉 | 阿尔茨海默病 | 深度迁移学习 | DenseNet-201 | MRI图像 | 包含阿尔茨海默病MRI扫描数据的五类数据集 |
794 | 2024-09-11 |
Multifunctional aggregation network of cell nuclei segmentation aiming histopathological diagnosis assistance: A new MA-Net construction
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0308326
PMID:39241001
|
研究论文 | 本文提出了一种基于U-Net的深度学习模型MA-Net,用于从H&E染色图像中准确分割细胞核,以辅助组织病理学诊断 | 本文创新性地应用了特征融合模块、注意力门单元和空洞空间金字塔池化到U-Net的编码器、解码器、跳跃连接和瓶颈部分,以提升网络在细胞核分割任务中的性能 | NA | 提升组织病理学图像中细胞核分割的准确性,以辅助自动化诊断系统 | H&E染色图像中的细胞核 | 计算机视觉 | NA | 深度学习 | U-Net | 图像 | 多个公共数据集 |
795 | 2024-09-11 |
Precision meets generalization: Enhancing brain tumor classification via pretrained DenseNet with global average pooling and hyperparameter tuning
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0307825
PMID:39241003
|
研究论文 | 研究通过预训练的DenseNet模型结合全局平均池化和超参数调优,提升脑肿瘤分类的准确性和泛化能力 | 采用DenseNet架构并结合全局平均池化和超参数调优,显著提高了脑肿瘤分类的准确性和泛化能力 | NA | 研究如何通过深度学习技术提高脑肿瘤分类的准确性和临床应用的泛化能力 | 脑肿瘤的分类,特别是三种常见类型:脑膜瘤、胶质瘤和垂体瘤 | 计算机视觉 | 脑肿瘤 | 深度学习 | DenseNet | 图像 | 3064张T1加权对比增强MRI图像,来自233名患者 |
796 | 2024-09-11 |
Diagnostic accuracy of dental caries detection using ensemble techniques in deep learning with intraoral camera images
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0310004
PMID:39241044
|
研究论文 | 本文研究了使用深度学习中的集成技术通过口腔内相机图像进行龋齿检测的诊断准确性 | 本文创新性地应用了集成技术在口腔内相机图像分类任务中,显著提高了龋齿检测的性能 | 本文未详细讨论集成技术在不同深度学习模型中的具体应用细节 | 评估基于口腔内相机图像的深度学习技术在龋齿检测中的诊断性能 | 研究对象为2,682张口腔内相机图像,涉及534名参与者 | 计算机视觉 | 口腔疾病 | 深度学习 | ResNet-50, Inception-v3, Inception-ResNet-v2, Faster R-convolutional neural network | 图像 | 2,682张口腔内相机图像,534名参与者 |
797 | 2024-09-11 |
Deep Learning Based Micro-RNA Analysis of Lipopolysaccharide Exposed Periodontal Ligament Stem Cells Exosomes Reveal Apoptotic and Inflammasome Derived Pathway Activation
2024, Biomedical engineering and computational biology
IF:2.3Q3
DOI:10.1177/11795972241277639
PMID:39246530
|
研究论文 | 本研究利用深度学习算法分析脂多糖暴露的牙周韧带干细胞外泌体中的微小RNA,揭示了与细胞凋亡和炎症小体激活相关的通路 | 首次使用深度学习算法识别脂多糖暴露的牙周韧带干细胞外泌体中的新型微小RNA生物标志物 | 需要未来研究使用独立数据集和实验方法验证这些生物标志物 | 利用深度学习算法揭示脂多糖暴露的牙周韧带干细胞外泌体中的新型微小RNA生物标志物,以理解其激活通路 | 脂多糖暴露的牙周韧带干细胞外泌体中的微小RNA | 机器学习 | 牙周疾病 | 深度学习分析 | 随机森林 | 微小RNA表达数据 | NCBI GEO DATA SET GSE163489中的健康和脂多糖诱导的牙周韧带干细胞 |
798 | 2024-09-11 |
Feasibility of tongue image detection for coronary artery disease: based on deep learning
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1384977
PMID:39246581
|
研究论文 | 研究探讨了基于深度学习的舌象检测在冠状动脉疾病诊断中的可行性 | 开发了一种新的冠状动脉疾病诊断算法,结合舌象特征提高了诊断性能 | NA | 验证舌象在冠状动脉疾病诊断中的潜在价值,并开发一种结合舌象输入的诊断模型 | 冠状动脉疾病患者 | 计算机视觉 | 心血管疾病 | 深度学习 | Resnet-18 | 图像 | 684名患者 |
799 | 2024-09-11 |
Comparing Deep Learning Performance for Chronic Lymphocytic Leukaemia Cell Segmentation in Brightfield Microscopy Images
2024, Bioinformatics and biology insights
IF:2.3Q3
DOI:10.1177/11779322241272387
PMID:39246684
|
研究论文 | 本文比较了八种先进的神经网络架构在低对比度明场显微镜图像中对慢性淋巴细胞白血病细胞进行分割的性能 | 本文采用了八种不同的神经网络架构进行比较,并结合了watershed算法和StarDist工具,以提高细胞边界检测的准确性 | 本文未详细讨论不同方法在不同应用场景下的适用性,且未提供大规模数据集上的验证结果 | 研究目的是通过自动检测明场时间序列显微镜图像中的细胞,为细胞形态学和迁移研究提供新的机会 | 研究对象是慢性淋巴细胞白血病细胞在低对比度明场显微镜图像中的分割 | 计算机视觉 | 血液疾病 | 深度学习 | U-net, U-net++, Pyramid Attention Network, Multi-Attention Network, LinkNet, Feature Pyramid Network, DeepLabV3, DeepLabV3+ | 图像 | 未明确提及具体样本数量 |
800 | 2024-09-11 |
A feasibility study on utilizing machine learning technology to reduce the costs of gastric cancer screening in Taizhou, China
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241277713
PMID:39247098
|
研究论文 | 本研究利用机器学习模型优化胃癌筛查评分并降低筛查成本 | 采用梯度提升机、分布式随机森林和深度学习三种机器学习模型优化胃癌筛查评分 | 三分类模型无法有效区分中高风险胃癌患者 | 优化胃癌筛查评分并降低筛查成本 | 228,634名参与泰州胃癌筛查项目的患者 | 机器学习 | 胃癌 | 机器学习 | 梯度提升机、分布式随机森林、深度学习 | 数值数据 | 228,634名患者 |