本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
81 | 2025-02-12 |
Diagnosis and detection of bone fracture in radiographic images using deep learning approaches
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1506686
PMID:39927268
|
研究论文 | 本文探讨了使用深度学习算法在X光图像中自动检测和诊断骨折的方法 | 提出了结合DenseNet201和VGG16的深度学习模型,用于骨折检测,并在验证阶段达到了97%的准确率 | 现有骨折检测和诊断方法的局限性,需要进一步改进深度学习模型 | 开发一种自动化的骨折检测方法,以提高骨折诊断的准确性 | X光图像中的骨折 | 计算机视觉 | 骨折 | 深度学习 | VGG16, ResNet152V2, DenseNet201 | 图像 | 10,580张X光图像 |
82 | 2025-02-12 |
NavBLIP: a visual-language model for enhancing unmanned aerial vehicles navigation and object detection
2024, Frontiers in neurorobotics
IF:2.6Q3
DOI:10.3389/fnbot.2024.1513354
PMID:39927288
|
研究论文 | 本文介绍了一种名为NavBLIP的视觉-语言模型,旨在通过利用多模态数据增强无人机的导航和物体检测能力 | NavBLIP模型引入了Nuisance-Invariant Multimodal Feature Extraction (NIMFE)模块和多模态控制策略,以在动态环境中提高适应性和计算效率 | NA | 提高无人机在复杂和多样化场景中的导航和物体检测能力 | 无人机 | 计算机视觉 | NA | 多模态数据融合 | 视觉-语言模型 | 图像和文本 | 在RefCOCO、CC12M和Openlmages等基准数据集上进行了广泛实验 |
83 | 2025-02-11 |
Utilisation of ChatGPT and other Artificial Intelligence tools among medical faculty in Uganda: a cross-sectional study
2024, MedEdPublish (2016)
DOI:10.12688/mep.20554.2
PMID:39911314
|
研究论文 | 本研究评估了乌干达医学教师对ChatGPT及其他人工智能工具的使用情况 | 首次在乌干达医学教师中调查ChatGPT及其他AI工具的使用情况,揭示了不同年龄段教师的使用差异 | 研究样本仅限于乌干达四所公立大学的医学教师,可能无法代表其他地区或国家的使用情况 | 评估乌干达医学教师对ChatGPT及其他AI工具的使用情况,探讨AI在医学教育中的应用潜力 | 乌干达四所公立大学的医学教师 | 自然语言处理 | NA | ChatGPT, Quill Bot | 深度学习模型 | 问卷调查数据 | 224名医学教师 |
84 | 2025-02-09 |
Ensemble Deep Learning Object Detection Fusion for Cell Tracking, Mitosis, and Lineage
2024, IEEE open journal of engineering in medicine and biology
IF:2.7Q3
DOI:10.1109/OJEMB.2023.3288470
PMID:39906165
|
研究论文 | 本文提出了一种新的基于深度学习的细胞检测、跟踪和运动分析方法EDNet,用于细胞追踪、有丝分裂和谱系分析 | EDNet采用集成方法进行2D细胞检测,其性能超越了单模型YOLO和FasterRCNN卷积神经网络,并在CTMCv1数据集上达到了最先进的性能 | NA | 提高细胞追踪和运动分析的准确性和效率,以促进生物医学研究和医学诊断的进展 | 细胞追踪、有丝分裂和细胞谱系 | 计算机视觉 | NA | 深度学习 | EDNet, YOLO, FasterRCNN | 图像 | CTMCv1数据集 |
85 | 2025-02-09 |
Deep learning in microbiome analysis: a comprehensive review of neural network models
2024, Frontiers in microbiology
IF:4.0Q2
DOI:10.3389/fmicb.2024.1516667
PMID:39911715
|
综述 | 本文综述了深度学习在微生物组分析中的应用,探讨了不同神经网络模型的优势、实际用途及对未来研究的影响 | 深度学习在微生物组研究中的创新应用,特别是在模式识别、特征提取和预测建模方面的显著能力 | 深度学习在微生物组研究中面临生物数据变异性的挑战,需要定制化方法以确保结果的稳健性和普适性 | 探讨深度学习在微生物组研究中的应用及其对健康、疾病和环境的影响 | 微生物组数据,包括不同类型的组学数据集 | 机器学习 | NA | 深度学习 | 神经网络 | 组学数据 | NA |
86 | 2025-02-09 |
Artificial intelligence in dentistry and dental biomaterials
2024, Frontiers in dental medicine
IF:1.5Q3
DOI:10.3389/fdmed.2024.1525505
PMID:39917699
|
综述 | 本文综述了人工智能(AI)在牙科和牙科生物材料中的应用,特别是修复牙科和修复学领域 | 介绍了AI在牙科诊断、治疗计划、结果预测和以患者为中心的护理中的互补作用,以及AI与数字成像和3D打印的整合 | NA | 概述AI及其在生物医学、牙科和牙科生物材料中的应用 | 牙科和牙科生物材料,特别是修复牙科和修复学 | 自然语言处理 | NA | 机器学习(ML)、深度学习(DL)、神经网络(NNs) | 深度学习 | 图像 | NA |
87 | 2025-02-08 |
Automated karyogram analysis for early detection of genetic and neurodegenerative disorders: a hybrid machine learning approach
2024, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2024.1525895
PMID:39911161
|
研究论文 | 本文提出了一种结合无监督和监督学习的混合机器学习方法,用于自动化核型分析,以早期检测遗传和神经退行性疾病 | 提出了一种新的混合方法,结合了无监督和监督学习技术,以克服染色体分析中标记数据有限和可扩展性的挑战 | 缺乏异常数据集,限制了深度学习模型的泛化能力 | 开发自动化核型分析模型,以早期检测和诊断染色体相关疾病 | 染色体图像 | 数字病理学 | 遗传疾病和神经退行性疾病 | Autoencoder和CNN | 混合模型(Autoencoder + CNN) | 图像 | 234,259张染色体图像 |
88 | 2025-02-08 |
Proximity-based solutions for optimizing autism spectrum disorder treatment: integrating clinical and process data for personalized care
2024, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2024.1512818
PMID:39911557
|
研究论文 | 本文探讨了利用人工智能(AI),特别是机器学习和深度学习,来改善自闭症谱系障碍(ASD)的诊断和治疗 | 通过集成临床和过程数据,创建了一个中央数据枢纽(MDP),利用AI算法识别ASD风险因素、个性化治疗计划,并预测潜在复发,同时引入患者面向的聊天机器人提供信息和支持 | 未提及具体的数据集大小或实验验证结果,可能缺乏对算法性能的详细评估 | 改善自闭症谱系障碍的诊断和治疗,优化整个护理过程 | 自闭症谱系障碍患者 | 机器学习 | 自闭症谱系障碍 | 机器学习和深度学习 | NA | 临床和过程数据 | NA |
89 | 2025-02-08 |
Accurate LAI estimation of soybean plants in the field using deep learning and clustering algorithms
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1501612
PMID:39911650
|
研究论文 | 本文提出了一种基于深度学习和聚类算法的高通量3D点云数据处理流程,用于分割田间大豆植株并估算其叶面积指数(LAI) | 结合PointNet++模型和Watershed算法,提高了大豆植株分割的准确性,并利用机器学习方法估算LAI,显著提升了高通量植物表型数据的提取效率 | 研究仅针对大豆植株,未涉及其他作物或复杂环境下的应用验证 | 开发一种高效、非破坏性的方法来估算田间大豆植株的叶面积指数(LAI) | 田间大豆植株 | 计算机视觉 | NA | LiDAR、PointNet++、Watershed算法、k-means聚类、SVM、RF、XGBoost | PointNet++、SVM、RF、XGBoost | 3D点云数据 | 未明确说明样本数量,但研究基于田间大豆植株 |
90 | 2025-02-08 |
YOLOv8s-Longan: a lightweight detection method for the longan fruit-picking UAV
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1518294
PMID:39911656
|
研究论文 | 本文提出了一种名为YOLOv8s-Longan的轻量级深度学习算法,用于提高果实采摘无人机的检测精度并减少模型参数数量 | 设计了Average和Max pooling attention (AMA)注意力模块,并将其集成到DenseAMA和C2f-Faster-AMA模块中,以提高网络的轻量化和泛化性能;设计了跨阶段局部网络结构VOVGSCSPC模块,通过多尺度特征融合提高模型的感知和表达能力;提出了新的Inner-SIoU损失函数作为目标边界框的损失函数 | NA | 设计一种快速准确的检测算法,以满足果实采摘无人机在复杂背景下的高精度和快速检测需求 | 龙眼果实 | 计算机视觉 | NA | 深度学习 | YOLOv8s-Longan | 图像 | NA |
91 | 2025-02-07 |
Deep Learning-Based Glucose Prediction Models: A Guide for Practitioners and a Curated Dataset for Improved Diabetes Management
2024, IEEE open journal of engineering in medicine and biology
IF:2.7Q3
DOI:10.1109/OJEMB.2024.3365290
PMID:38899015
|
研究论文 | 本研究利用从可穿戴传感器收集的生理数据,构建了一系列基于深度学习的数据驱动模型,旨在为糖尿病患者和风险人群提供准确的短期和中期血糖预测 | 系统比较了多种深度学习架构,确定了最佳输入变量集,比较了群体模型、微调模型和个性化模型,并评估了个体数据量对模型性能的影响,同时引入了一个精心策划的数据集 | 未提及具体模型的局限性 | 开发准确的血糖预测模型,以改善糖尿病管理 | 糖尿病患者和风险人群 | 机器学习 | 糖尿病 | 深度学习 | 深度学习模型 | 生理数据 | 包括健康个体和糖尿病患者的数据 |
92 | 2025-02-07 |
Optimizing Machine Learning Models for Accessible Early Cognitive Impairment Prediction: A Novel Cost-effective Model Selection Algorithm
2024, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/access.2024.3505038
PMID:39902153
|
研究论文 | 本研究旨在开发一种成本效益高且易于获取的机器学习模型,用于预测认知障碍的风险 | 开发了一种新的算法,用于选择成本效益高的模型,同时最小化开发和运营成本 | 研究主要依赖于NACC UDS数据集,可能限制了模型的广泛适用性 | 开发早期认知障碍预测的机器学习模型 | 认知障碍和痴呆相关疾病 | 机器学习 | 老年疾病 | 机器学习、深度学习 | SVM | 人口统计和历史健康数据 | NA |
93 | 2025-02-06 |
Classification of tomato leaf disease using Transductive Long Short-Term Memory with an attention mechanism
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1467811
PMID:39906226
|
研究论文 | 本文提出了一种基于Transductive Long Short-Term Memory(T-LSTM)和注意力机制的番茄叶病分类方法 | 引入了T-LSTM与注意力机制结合的方法,能够聚焦于图像序列的不同部分,并通过转导学习利用训练实例的特定特征进行准确预测 | 未提及模型在其他作物或更大规模数据集上的泛化能力 | 提高番茄叶病分类的准确性和效率 | 番茄叶病 | 计算机视觉 | 植物病害 | 深度学习 | T-LSTM, U-Net, VGG-16 | 图像 | PlantVillage数据集 |
94 | 2025-02-07 |
An improved ShuffleNetV2 method based on ensemble self-distillation for tomato leaf diseases recognition
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1521008
PMID:39906224
|
研究论文 | 本文提出了一种基于集成自蒸馏的改进ShuffleNetV2方法,用于番茄叶部病害识别 | 提出了一种集成自蒸馏方法,并将其应用于轻量级模型ShuffleNetV2,通过构建不同深度的浅层模型并引入深度可分离卷积层,显著提升了模型性能 | 未提及具体的数据集规模或模型在不同硬件上的实际部署效果 | 提高番茄病害识别的准确性和模型在边缘设备上的部署能力 | 番茄叶部病害 | 计算机视觉 | 植物病害 | 集成自蒸馏 | ShuffleNetV2 | 图像 | NA |
95 | 2025-02-06 |
Automated classification of elongated styloid processes using deep learning models-an artificial intelligence diagnostics
2024, Frontiers in oral health
IF:3.0Q1
DOI:10.3389/froh.2024.1424840
PMID:39902080
|
研究论文 | 本研究开发了一种基于深度学习的自动化分类系统,用于分类延长的茎突过程,并评估了EfficientNetB5和InceptionV3两种架构的性能 | 利用深度学习模型EfficientNetB5和InceptionV3对延长的茎突过程进行自动化分类,提高了诊断准确性 | 研究依赖于回顾性数据,且样本量有限,可能影响模型的泛化能力 | 开发并评估深度学习模型在分类延长茎突过程中的性能 | 延长的茎突过程 | 计算机视觉 | Eagle综合症 | 深度学习 | EfficientNetB5, InceptionV3 | 图像 | 330张延长茎突图像和120张正常茎突图像 |
96 | 2025-02-06 |
Rapid and non-destructive classification of rice seeds with different flavors: an approach based on HPFasterNet
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1502631
PMID:39902203
|
研究论文 | 本研究提出了一种基于深度学习的快速无损分类方法,用于区分不同风味的稻米种子 | 提出了结合Ghost bottleneck和FasterNet_T0的轻量级网络HPFasterNet,并引入了组卷积以提高模型性能 | NA | 开发一种快速无损的稻米种子分类方法,以提高稻米品种识别的效率和准确性 | 19种粳稻种子 | 计算机视觉 | NA | 深度学习 | HPFasterNet | 图像 | 36735张图像 |
97 | 2025-02-05 |
MyoV: a deep learning-based tool for the automated quantification of muscle fibers
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbad528
PMID:38271484
|
研究论文 | 本文介绍了一种名为MyoV的深度学习工具,用于自动量化肌肉纤维 | MyoV工具通过结合卷积神经网络、残差网络和特征金字塔网络,实现了对不同大小和年龄肌肉纤维的自动处理,并在量化性能上超越了手动方法和常用算法 | NA | 开发一种自动化工具,用于准确量化肌肉纤维,以支持生物医学研究和肉类生产 | 肌肉纤维 | 计算机视觉 | NA | 深度学习 | CNN, 残差网络, 特征金字塔网络 | 图像 | 超过660,000个手动和半自动标记的肌肉纤维,以及超过400,000个全片图像中的肌肉纤维 |
98 | 2025-02-05 |
Multi-modal features-based human-herpesvirus protein-protein interaction prediction by using LightGBM
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae005
PMID:38279649
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
99 | 2025-02-05 |
Recognition of rare antinuclear antibody patterns based on a novel attention-based enhancement framework
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbad531
PMID:38279651
|
研究论文 | 本文介绍了一种基于注意力机制的增强框架,用于识别ANA间接免疫荧光图像中的罕见抗核抗体模式 | 首次专门针对罕见ANA模式的识别进行研究,并引入了注意力机制以加速神经网络的学习过程,提取更本质和独特的特征 | 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 | 提高罕见抗核抗体(ANA)模式的识别精度,以辅助临床实验室的常规ANA筛查 | ANA间接免疫荧光图像 | 计算机视觉 | NA | 深度学习 | 注意力机制增强的神经网络 | 图像 | 未提及具体样本数量 |
100 | 2025-02-05 |
scMMT: a multi-use deep learning approach for cell annotation, protein prediction and embedding in single-cell RNA-seq data
2024-01-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbad523
PMID:38300515
|
研究论文 | 本文提出了一种名为scMMT的监督学习方法,用于单细胞RNA测序数据中的细胞注释、蛋白质预测和嵌入 | 提出了一种新的特征提取技术,并构建了一个基于GradNorm方法的多任务学习框架,以增强对具有相似分子特征但功能不同的免疫细胞的识别,并减少标签噪声对模型精度的影响 | NA | 提高单细胞RNA测序数据中细胞类型注释的准确性,以促进生物学和医学研究,特别是在理解疾病进展和肿瘤微环境方面 | 单细胞RNA测序数据 | 机器学习 | NA | 单细胞RNA测序 | 多任务学习框架 | RNA测序数据 | 多个公共数据集 |