本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1081 | 2024-09-30 |
Understanding COVID-19 vaccine hesitancy of different regions in the post-epidemic era: A causality deep learning approach
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241272712
PMID:39328301
|
研究论文 | 本文通过分析与疫苗评论和公众态度相关的文本,探讨了后疫情时代不同地区对三种主要疫苗品牌(科兴、阿斯利康和辉瑞)的疫苗犹豫情况,并研究了疫苗犹豫与不同地区疫情流行程度之间的关系 | 本文提出了一个因果深度学习模型BertMCNN,用于预测用户的疫苗接种意愿和态度,并在提供的数据集上展示了优于传统机器学习算法和其他深度学习模型的性能 | NA | 理解后疫情时代不同地区的疫苗犹豫情况,并研究其与疫情流行程度的关系 | 科兴、阿斯利康和辉瑞三种疫苗品牌的公众评论和态度 | 自然语言处理 | NA | 因果深度学习 | BertMCNN | 文本 | 165629条Twitter用户评论 | NA | NA | NA | NA |
| 1082 | 2024-09-30 |
Explainable feature selection and deep learning based emotion recognition in virtual reality using eye tracker and physiological data
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1438720
PMID:39328315
|
研究论文 | 研究在虚拟现实环境中使用可解释的机器学习和深度学习技术进行情感识别 | 结合虚拟现实与先进的可解释机器学习和深度学习方法进行情感识别 | NA | 探索在虚拟现实环境中使用可解释的机器学习和深度学习技术进行情感识别 | 情感识别 | 机器学习 | NA | 可解释的机器学习和深度学习技术 | 支持向量分类器 (SVC), K近邻 (KNN), 逻辑回归 (LR), 深度神经网络 (DNN), 双向长短期记忆网络 (Bi-LSTM), 注意力机制LSTM | 多模态数据 | 使用名为VREED的多模态数据集进行情感识别 | NA | NA | NA | NA |
| 1083 | 2024-09-30 |
RETRACTION: Deep Learning Dual Neural Networks in the Construction of Learning Models for Online Courses in Piano Education
2024, Computational intelligence and neuroscience
DOI:10.1155/2024/9761240
PMID:39328477
|
correction | 撤回了一篇关于使用深度学习双神经网络构建在线钢琴教育学习模型的文章 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1084 | 2024-09-30 |
RETRACTION: Cultural and Creative Product Design and Image Recognition Based on Deep Learning
2024, Computational intelligence and neuroscience
DOI:10.1155/2024/9767918
PMID:39328483
|
correction | 撤回了一篇关于基于深度学习的文化创意产品设计和图像识别的文章 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1085 | 2024-09-28 |
RETRACTION: Analysis of Traditional Cultural Acceptance Based on Deep Learning
2024, Computational intelligence and neuroscience
DOI:10.1155/2024/9823927
PMID:39328496
|
correction | 撤回基于深度学习的传统文化接受度分析文章 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1086 | 2024-09-30 |
Towards sustainable coastal management: aerial imagery and deep learning for high-resolution Sargassum mapping
2024, PeerJ
IF:2.3Q2
DOI:10.7717/peerj.18192
PMID:39329141
|
研究论文 | 本研究提出了一种基于pix2pix架构的语义分割方法,用于计算海滩上浮游植物的覆盖面积 | 本研究首次使用pix2pix架构进行高分辨率浮游植物地图绘制,并构建了一个包含15,268张航拍图像的独特数据集 | 算法在识别浮游植物像素时存在轻微的低估倾向 | 研究旨在通过深度学习技术实现可持续的海岸管理,特别是浮游植物的分布和数量监测 | 研究对象包括大西洋沿岸多个国家的浮游植物分布和数量 | 计算机视觉 | NA | 深度学习 | pix2pix | 图像 | 15,268张航拍图像,分为三个类别,对应墨西哥金塔纳罗奥州的Mahahual和Puerto Morelos两个城市的海滩 | NA | NA | NA | NA |
| 1087 | 2024-09-28 |
Prediction of early-phase cytomegalovirus pneumonia in post-stem cell transplantation using a deep learning model
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-240597
PMID:39058469
|
研究论文 | 研究利用深度学习模型预测造血干细胞移植后早期巨细胞病毒性肺炎 | 采用少样本迁移学习策略,利用少量CT图像区分罕见肺炎类型 | 样本量较小,可能影响模型的泛化能力 | 开发一种深度学习模型,用于区分造血干细胞移植后巨细胞病毒性肺炎与其他类型肺炎 | 造血干细胞移植后患者的巨细胞病毒性肺炎 | 计算机视觉 | 肺部疾病 | 深度学习 | Xception | 图像 | 34例巨细胞病毒性肺炎病例,1681张COVID-19、社区获得性肺炎和正常肺部CT图像,98张巨细胞病毒性肺炎和正常肺部CT图像 | NA | NA | NA | NA |
| 1088 | 2024-09-28 |
Forecasting deep learning-based risk assessment of vector-borne diseases using hybrid methodology
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-240046
PMID:38968030
|
研究论文 | 本文提出了一种基于径向基函数网络(RBFNs)和Darts游戏优化器(DGO)算法的新方法,用于预测蚊媒疾病的风险 | 本文的创新点在于结合了RBFNs和DGO算法,以提高预测蚊媒疾病风险的准确性和鲁棒性 | NA | 研究目的是提出一种新的方法来预测蚊媒疾病的风险,以帮助公共卫生领域的疾病控制 | 研究对象是蚊媒疾病的风险预测 | 机器学习 | NA | 径向基函数网络(RBFNs),Darts游戏优化器(DGO)算法 | 径向基函数网络(RBFNs) | 历史疾病数据,气候变量,地理数据 | NA | NA | NA | NA | NA |
| 1089 | 2024-09-28 |
Deep-KEDI: Deep learning-based zigzag generative adversarial network for encryption and decryption of medical images
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-231927
PMID:38968065
|
研究论文 | 本文提出了一种基于深度学习的医疗图像加密和解密方法,使用深度学习网络生成安全密钥 | 设计了一种新的深度学习网络Deep-KEDI,用于生成加密和解密医疗图像的安全密钥,并采用了Zigzag生成对抗网络(ZZ-GAN) | NA | 开发一种新的深度学习方法,用于生成安全密钥以加密和解密医疗图像 | 医疗图像的加密和解密 | 计算机视觉 | NA | 深度学习 | 生成对抗网络(GAN) | 图像 | NA | NA | NA | NA | NA |
| 1090 | 2024-09-28 |
An automated two-stage approach to kidney and tumor segmentation in CT imaging
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-232009
PMID:38875055
|
研究论文 | 提出了一种基于深度学习的两阶段方法,用于在CT图像中自动分割肾脏和肿瘤 | 使用注意力循环残差卷积网络进行分割,显著提高了肾脏和肾脏肿瘤分割的准确性 | NA | 提高肾脏和肾脏肿瘤在CT图像中的分割精度,减少人工干预 | 肾脏和肾脏肿瘤 | 计算机视觉 | NA | 深度学习 | 注意力循环残差卷积网络 | CT图像 | KiTS19数据集 | NA | NA | NA | NA |
| 1091 | 2024-09-28 |
Deep learning approach for skin melanoma and benign classification using empirical wavelet decomposition
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-240020
PMID:38788103
|
研究论文 | 本文提出了一种基于经验小波分解和双曲正切调制滤波器组的新模型,用于皮肤黑色素瘤和良性病变的分类 | 本文创新性地使用了基于双曲正切调制滤波器组的经验小波分解模型,显著提高了皮肤病变图像特征提取的准确性 | NA | 开发一种新的计算机技术模型,用于早期区分黑色素瘤和良性皮肤病变 | 皮肤病变图像 | 计算机视觉 | 皮肤癌 | 经验小波分解 | NA | 图像 | NA | NA | NA | NA | NA |
| 1092 | 2024-09-28 |
Deep learning for blood glucose level prediction: How well do models generalize across different data sets?
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0310801
PMID:39321157
|
研究论文 | 本文研究了不同深度学习模型在预测糖尿病患者血糖水平方面的泛化能力 | 本文通过比较多种深度学习模型在不同数据集上的表现,评估了它们的泛化能力,并发现LSTM和SAN模型在捕捉长期依赖性和相关因素方面表现出色 | 本文仅评估了特定深度学习模型在血糖预测中的表现,未涵盖其他可能的模型或技术 | 比较和分析不同深度学习模型在预测血糖水平方面的适用性和泛化能力 | 糖尿病患者的血糖水平预测 | 机器学习 | 糖尿病 | 深度学习 | LSTM, SAN, CNN, FFN | 时间序列数据 | 四个不同大小和来源的数据集,涵盖不同年龄组和条件 | NA | NA | NA | NA |
| 1093 | 2024-09-28 |
Bibliometric and visualized analysis of the application of artificial intelligence in stroke
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1411538
PMID:39323917
|
研究论文 | 本文对人工智能在卒中领域的应用进行了文献计量和可视化分析 | 首次系统性地对人工智能在卒中领域的应用进行了文献计量分析,揭示了当前研究热点和未来发展趋势 | 仅限于英文发表的文章,可能忽略了其他语言的重要研究成果 | 分析人工智能在卒中领域的应用现状、热点和未来发展趋势 | 人工智能在卒中领域的应用研究文献 | 机器学习 | 卒中 | 文献计量分析 | NA | 文献 | 2447篇论文 | NA | NA | NA | NA |
| 1094 | 2024-09-28 |
Applications of Deep Learning: Automated Assessment of Vascular Tortuosity in Mouse Models of Oxygen-Induced Retinopathy
2024 Jan-Feb, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2023.100338
PMID:37869029
|
研究论文 | 开发生成对抗网络(GAN)用于分割氧诱导视网膜病变(OIR)小鼠模型视网膜平铺图像中的主要血管,并展示这些GAN生成的血管分割在量化血管迂曲度方面的应用 | 使用生成对抗网络(GAN)自动生成视网膜血管分割图,并用于量化血管迂曲度 | NA | 开发和验证用于视网膜血管分割的生成对抗网络(GAN),并评估其在量化血管迂曲度方面的应用 | 氧诱导视网膜病变(OIR)小鼠模型的视网膜平铺图像中的主要血管 | 计算机视觉 | 视网膜病变 | 生成对抗网络(GAN) | Pix2Pix | 图像 | 三个数据集,包含1084、50和20张不同染色和牺牲年龄的小鼠视网膜平铺图像 | NA | NA | NA | NA |
| 1095 | 2024-09-27 |
Advanced Machine Learning Models for Predicting Post-Thrombolysis Hemorrhagic Transformation in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis
2024 Jan-Dec, Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis
DOI:10.1177/10760296241279800
PMID:39262220
|
meta-analysis | 本文对使用机器学习和深度学习算法预测急性缺血性卒中患者溶栓后出血转化的研究进行了系统综述和荟萃分析 | 本文首次系统综述和荟萃分析了多种机器学习模型在预测急性缺血性卒中患者溶栓后出血转化的应用,特别是XGBoost和人工神经网络模型的高预测性能 | 研究存在方法学差异和外部验证不足的问题,需要标准化报告和进一步严格测试 | 评估机器学习模型在预测急性缺血性卒中患者溶栓后出血转化的有效性 | 急性缺血性卒中接受溶栓治疗的患者 | machine learning | stroke | machine learning, deep learning | XGBoost, Artificial Neural Network (ANN) | clinical data, radiomic features | 18007名急性缺血性卒中接受溶栓治疗的患者 | NA | NA | NA | NA |
| 1096 | 2024-09-27 |
Reasoning cartographic knowledge in deep learning-based map generalization with explainable AI
2024, International journal of geographical information science : IJGIS
IF:4.3Q1
DOI:10.1080/13658816.2024.2369535
PMID:39318700
|
研究论文 | 本文探讨了在基于深度学习的制图综合中融入可解释人工智能(XAI)以提高模型理解和改进的方法 | 本文首次将可解释人工智能(XAI)引入到基于深度学习的制图综合过程中,通过可视化和定量实验解释了预训练的ResU-Net模型对输入特征的重要性 | 本文仅通过一个实验案例研究了XAI在制图综合中的应用,未来需要更多案例和更广泛的数据集来验证其有效性 | 研究如何通过可解释人工智能(XAI)提高基于深度学习的制图综合模型的可解释性和改进效果 | 制图综合中的深度神经网络模型及其可解释性 | 计算机视觉 | NA | 深度学习 | ResU-Net | 图像 | 具体样本数量未在摘要中提及 | NA | NA | NA | NA |
| 1097 | 2024-09-27 |
Proceedings of the 2024 Transplant AI Symposium
2024, Frontiers in transplantation
DOI:10.3389/frtra.2024.1399324
PMID:39319335
|
研究论文 | 本文总结了2024年移植AI研讨会上Ajmera移植中心关于移植AI最新发展的讨论 | 探讨了AI在移植医学中的应用潜力,并强调了开发深度学习模型时需要考虑的数据多样性和透明性 | 未具体讨论具体的AI模型或技术细节 | 总结和讨论AI在移植医学中的应用及其发展 | AI在移植医学中的应用及其对患者护理的影响 | 机器学习 | NA | 深度学习 | NA | NA | NA | NA | NA | NA | NA |
| 1098 | 2024-09-26 |
Implementation of resource-efficient fetal echocardiography detection algorithms in edge computing
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0305250
PMID:39312521
|
研究论文 | 本文介绍了在边缘计算中实现资源高效的胎儿超声心动图检测算法 | 提出了YOLOv5s_emn系列算法,通过骨干替换、剪枝和推理优化,在保持高准确性的同时显著减少了模型大小和参数数量 | NA | 旨在通过实时识别和跟踪胎儿超声心动图,推动智能超声设备的发展,辅助医疗专业人员 | 胎儿超声心动图检测算法 | 计算机视觉 | NA | 深度学习 | YOLOv5s | 图像 | NA | NA | NA | NA | NA |
| 1099 | 2024-09-26 |
Attention-aware with stacked embedding for sentiment analysis of student feedback through deep learning techniques
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2283
PMID:39314683
|
研究论文 | 本文提出了一种基于集成学习和多头注意力机制的混合模型,用于学生反馈的情感分析 | 本文提出了一种创新的混合模型,结合了集成学习、多头注意力机制和深度学习分类器,显著提高了情感分析的准确性 | NA | 提高学生反馈情感分析的准确性和效果 | 学生反馈的情感分析 | 自然语言处理 | NA | 深度学习 | 多头注意力机制 | 文本 | NA | NA | NA | NA | NA |
| 1100 | 2024-09-26 |
Multi-modal deep learning framework for damage detection in social media posts
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2262
PMID:39314679
|
研究论文 | 本文介绍了一种用于检测社交媒体帖子中损害的多模态深度学习框架 | 结合了BERT架构和高级卷积处理,该框架在准确性、召回率和F1分数上优于现有方法 | 目前仅处理文本和图像数据,未来可扩展到包括更多类型的信息如人声或背景声音 | 提高危机管理中对受影响个体的快速识别和帮助 | 社交媒体帖子中的损害检测 | 机器学习 | NA | BERT架构和卷积神经网络 | BERT和CNN | 文本和图像 | NA | NA | NA | NA | NA |