深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1537 篇文献,本页显示第 1241 - 1260 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1241 2024-08-05
Chronic Wound Image Augmentation and Assessment Using Semi-Supervised Progressive Multi-Granularity EfficientNet
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 使用半监督学习和深度学习方法对慢性创伤图像进行增强和评估 提出了一种半监督PMGEfficientNet方法,提高了慢性创伤图像评分的准确性,并优于基线模型 合成创伤图像生成未能改善创伤评估的结果 通过增强创伤数据集,提升深度学习在创伤评估中的应用效果 小型且不平衡的创伤数据集以及二次未标记的创伤图像数据集 计算机视觉 NA 半监督学习 EfficientNet卷积神经网络 图像 共计11509张创伤图像,包括1639张标记图像和9870张未标记图像
1242 2024-08-05
A Deep Learning Approach for Beamforming and Contrast Enhancement of Ultrasound Images in Monostatic Synthetic Aperture Imaging: A Proof-of-Concept
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本研究展示了一种深度神经网络(DNN)用于重建高对比度超声图像的方法 该文章创新性地使用DNN从单通道合成孔径(SA)方法的射频信号中重建图像,提高了图像质量和对比度 研究中使用的模拟图像可能无法完全代表实际临床场景的复杂性 研究的目的是提高合成孔径超声成像的图像质量和对比度 研究对象是通过单通道SA获取的射频信号及其重建的目标图像 数字病理学 NA 超声成像 U-net 图像 27200对射频信号和500幅模拟测试图像
1243 2024-08-05
NeoSSNet: Real-Time Neonatal Chest Sound Separation Using Deep Learning
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本研究介绍了一种名为NeoSSNet的新型深度学习模型,旨在实时分离新生儿的胸部声音 创新点在于提出了类似于Conv-TasNet的基于掩蔽的架构,并结合了一维卷积和变换器架构的掩蔽生成器 NA 研究旨在改进新生儿胸音分离的质量和效率 主要针对新生儿的心音和肺音 数字病理学 心血管疾病和呼吸系统疾病 深度学习 卷积神经网络(CNN) 声音 NA
1244 2024-08-05
UKSSL: Underlying Knowledge Based Semi-Supervised Learning for Medical Image Classification
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本研究介绍了一种基于潜在知识的半监督框架UKSSL,用于医学图像分类。 提出了一种结合MedCLR和UKMLP的框架,有效利用未标记数据和少量标记数据进行医学图像分类。 研究仅使用了50%的标记数据,可能影响结果的推广性。 旨在解决医学图像分类中由于标记数据稀缺而导致的训练高性能模型的挑战。 研究对象为未标记和有限标记的医学图像。 计算机视觉 NA 深度学习 NA 医学图像 使用了LC25000和BCCD数据集,其中50%为标记数据
1245 2024-08-05
Multimodal Emotion Recognition Based on Facial Expressions, Speech, and EEG
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本文提出了一种基于深度学习的多模态情感识别方法Deep-Emotion,能够有效集成面部表情、语音和脑电图(EEG)的特征 提出了一种新框架Deep-Emotion,包括改进的GhostNet、轻量级全卷积神经网络和树状LSTM模型以提升情感识别性能 需要处理的计算能力增加,实时检测与提升深度神经网络的鲁棒性仍然是挑战 提升多模态情感识别的表现和准确性 面部表情、语音和脑电图(EEG)的情感特征 机器学习 NA 脑电图(EEG)、深度学习 GhostNet, LFCNN, tLSTM 图像、音频 使用了CK+、EMO-DB和MAHNOB-HCI等数据集进行广泛实验
1246 2024-08-05
Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本文提出了一种通过内镜图像诊断胃早期癌前病变的新方法 提出了胃部分相关网络(GSCNet),首次实现从内镜图像中识别高胃癌风险患者 NA 诊断胃体优先的胃炎指数(CGI)以识别高胃癌风险患者 内镜图像中的胃部分 数字病理学 胃癌 内镜图像分析 深度学习网络 图像 NA
1247 2024-08-05
Guest Editorial Introduction to the Special Section on Weakly-Supervised Deep Learning and Its Applications
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
评论 本篇文章介绍了弱监督深度学习及其在生物医学数据分析中的应用 提出了弱监督深度学习技术作为解决生物医学数据分析挑战的新方法 涉及的特定限制尚未在摘要中提及 探讨弱监督深度学习技术在生物医学数据分析中的应用 生物医学领域的数据,包括信号、图像和视频 深度学习 NA 深度学习 GANs, GNNs, ViTs, DRL 信号、图像和视频 NA
1248 2024-08-05
Deep Learning-Based Glucose Prediction Models: A Guide for Practitioners and a Curated Dataset for Improved Diabetes Management
2024, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本文构建了一系列基于深度学习的血糖预测模型,并比较了它们的效果。 提出了一套精心策划的数据集,并系统比较了不同深度学习架构在血糖预测中的表现。 研究可能受到样本选择和个体数据量的限制,未提及特定的限制条件。 研究旨在改善糖尿病管理,通过深度学习技术构建精确的血糖预测模型。 研究对象为健康个体和糖尿病患者,通过可穿戴传感器收集生理数据。 机器学习 糖尿病 深度学习 NA 生理数据 包含来自健康个体和糖尿病患者的数据,样本量未具体说明
1249 2024-08-05
Histopathology-based breast cancer prediction using deep learning methods for healthcare applications
2024, Frontiers in oncology IF:3.5Q2
研究论文 本研究使用深度学习方法分析乳腺癌的组织病理学图像,以提高自动诊断的准确性 该论文提出了一种结合超分辨率生成对抗网络 (SRGAN) 和补丁式特征提取的创新方法,显著提高了乳腺癌的分类准确性 研究依赖于特定的公共数据集,可能影响结果的广泛适用性 研究旨在通过深度学习提高乳腺癌的自动诊断准确性 研究对象包括BreakHis和侵袭性导管癌 (IDC) 数据集中的组织病理学图像 数字病理学 乳腺癌 超分辨率生成对抗网络 (SRGAN) 和长短期记忆网络 (LSTM) Inception V3 和 Resnet-50 图像 使用了BreakHis和IDC数据集中的组织病理学图像
1250 2024-08-05
A comprehensive approach for osteoporosis detection through chest CT analysis and bone turnover markers: harnessing radiomics and deep learning techniques
2024, Frontiers in endocrinology IF:3.9Q2
研究论文 本研究评估了利用放射组学、深度学习和迁移学习方法分析胸部CT扫描的可能性 结合放射组学和深度学习技术,同时考虑骨转换标志物进行骨质疏松症的筛查 骨转换标志物可能对骨质疏松症筛查并非必要 评估胸部CT扫描和骨转换标志物在骨质疏松症筛查中的应用 488名接受胸部CT和骨密度检测的患者 数字病理学 骨质疏松症 放射组学,深度学习 2D和3D深度学习模型, 2D和3D迁移学习模型 医学影像 488名患者
1251 2024-08-05
The potential of the transformer-based survival analysis model, SurvTrace, for predicting recurrent cardiovascular events and stratifying high-risk patients with ischemic heart disease
2024, PloS one IF:2.9Q1
研究论文 本研究评估了基于Transformer的生存分析模型SurvTrace在预测复发心血管事件及高风险缺血性心脏病患者分层中的准确性 该研究利用最先进的深度学习方法Transformer进行生存分析,展示了其在心血管事件预测中的优势 本研究的局限在于仅基于特定医院的患者数据,可能影响结果的普遍适用性 本研究的目的是评估SurvTrace模型在预测复发心血管事件及高风险患者中的准确性 研究对象为2005年至2019年在东京大学医院接受经皮冠状动脉介入的心血管患者 计算机视觉 心血管疾病 Transformer NA 数据集 总共3938个病例,其中394个作为测试数据集,3544个用于模型训练
1252 2024-08-05
A high-accuracy lightweight network model for X-ray image diagnosis: A case study of COVID detection
2024, PloS one IF:2.9Q1
研究论文 本研究提出了一种高精度轻量级网络模型用于X光图像诊断,专注于COVID-19检测。 本研究采用了MobileNetV3作为基础架构,并通过引入密集块、过渡层、标签平滑损失和类别加权等创新方法,显著提高了模型的分类准确性,同时减少了参数数量。 该研究未提及实验证据的外部验证和应用范围的广泛性,可能限制了其通用性。 研究旨在开发一种快速可靠的X光图像诊断方法,以应对COVID-19病情的快速传播。 主要研究对象为COVID-19患者的X光影像。 计算机视觉 COVID-19 深度学习 MobileNetV3 图像 使用公开可获取的数据库进行验证,样本数量未具体说明
1253 2024-08-05
Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images
2024, Frontiers in endocrinology IF:3.9Q2
研究论文 本文开发并验证了一种深度学习放射组学模型,用于预测骨质疏松椎体骨折的分类 创新点在于使用深度学习放射组学模型,从X光图像中提取特征,以分类骨质疏松椎体骨折 该研究尚未讨论模型在不同种族或年龄组的适用性 研究旨在利用X光图像预测骨质疏松椎体骨折的分类 研究对象包括942名患者,检查1076个椎骨 医学影像处理 骨质疏松病 深度学习放射组学 ResNet-50 图像 942名患者,1076个椎骨的X光图像
1254 2024-08-05
Small target tea bud detection based on improved YOLOv5 in complex background
2024, Frontiers in plant science IF:4.1Q1
研究论文 该研究提出了一种基于改进YOLOv5的小目标茶芽检测方法 使用注意力机制和轻量级卷积方法,提高了茶芽检测的准确性和速度 现有检测方法在复杂背景下仍然存在局限 实现智能茶芽采摘的准确和快速茶芽检测 茶芽 计算机视觉 NA YOLOv5, SPPF, GSConv NA 图像 NA
1255 2024-08-05
Enhancing surgical decision-making in NEC with ResNet18: a deep learning approach to predict the need for surgery through x-ray image analysis
2024, Frontiers in pediatrics IF:2.1Q2
研究论文 该文章探讨了使用ResNet18深度学习模型分析X光图像以优化新生儿坏死性小肠炎手术决策。 该研究首次将深度学习应用于新生儿坏死性小肠炎的影像分析,以预测是否需要手术。 研究仅基于回顾性分析,样本数量和时间范围可能影响结果的普遍性。 本研究旨在通过分析床边X光图像来优化新生儿坏死性小肠炎的手术决策。 研究对象为263例被诊断为坏死性小肠炎的婴儿,分为手术组和非手术组。 计算机视觉 新生儿坏死性小肠炎 深度学习 ResNet18 X光图像 263例新生儿坏死性小肠炎患者的X光图像
1256 2024-08-05
Application and progress of artificial intelligence technology in the segmentation of hyperreflective foci in OCT images for ophthalmic disease research
2024, International journal of ophthalmology IF:1.9Q2
综述 本文综述了人工智能技术在OCT图像中对高反射焦点的分割在眼科疾病研究中的应用与进展 文章创新地探讨了AI技术在生物标志物分析中的应用,提升了对眼科疾病的早期筛查和诊断精度 文章未具体阐述AI技术在不同眼科疾病应用中的局限性 研究人工智能在眼科疾病高反射焦点的分割与分析中的应用潜力 瞄准高反射焦点及其在眼科疾病中的生物标志物角色 计算机视觉 年龄相关性黄斑变性,糖尿病性视网膜水肿,视网膜静脉阻塞 机器学习,深度学习 NA 光学相干断层扫描图像 NA
1257 2024-08-05
Prediction of protein-ligand binding affinity via deep learning models
2024-Jan-22, Briefings in bioinformatics IF:6.8Q1
评论 本文概述了用于预测蛋白质-配体结合亲和力的计算方法,特别是基于深度学习的模型 文章探讨了深度学习模型在蛋白质-配体结合亲和力预测中的应用及其面临的挑战 当前的深度学习模型由于数据库质量低、输入表示不准确和模型架构不合适而存在局限性 研究蛋白质-配体结合亲和力的预测方法,以优化药物筛选 主要研究蛋白质与配体之间的结合亲和力 计算机辅助药物设计 NA 深度学习 NA 数据表 NA
1258 2024-08-05
Corrigendum: Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review
2024, Frontiers in oncology IF:3.5Q2
更正 该文章更正了之前发表的有关深度学习或基于CT的放射组学在预测胃癌对新辅助化疗反应的研究 NA NA NA NA NA 胃癌 NA NA NA NA
1259 2024-08-05
Classification of white blood cells (leucocytes) from blood smear imagery using machine and deep learning models: A global scoping review
2024, PloS one IF:2.9Q1
评论 本文综述了机器学习和深度学习在血液涂片图像中白血球分类中的应用 首次系统评估机器学习和深度学习技术在白血球分类中的比较与选择 缺乏适当的数据集仍然是主要挑战,且对计算机科学研究人员的医学培训不够充分 全面识别、探索和对比白血球分类的机器学习和深度学习方法 136项关于白血球分类的基础研究 机器学习 血液疾病 NA CNN 图像 136项研究,涵盖26个国家
1260 2024-08-05
Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy
2024, Frontiers in immunology IF:5.7Q1
综述 本文综合评述了肿瘤免疫检查点抑制剂(ICI)免疫治疗的预测性生物标志物和计算模型的最新进展 强调了增强程序性死亡蛋白1(PD-1)/程序性死亡配体1(PD-L1)和细胞毒性T淋巴细胞抗原4(CTLA-4)抑制剂疗法的有效性的生物标志物,并讨论了相关技术和模型 未提及具体研究限制 探索ICI免疫治疗的预测性生物标志物和计算模型 生物标志物来源于肿瘤细胞、肿瘤免疫微环境、体液、肠道微生物和代谢产物 数字病理学 肿瘤 NA 知识基础机制模型和数据基础机器学习模型 NA NA
回到顶部