本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1321 | 2024-08-05 |
PSPI: A deep learning approach for prokaryotic small protein identification
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1439423
PMID:39050248
|
研究论文 | 本文介绍了一种名为PSPI的深度学习方法,用于识别原核小蛋白 | PSPI是专门为预测原核小蛋白而设计的深度学习工具,具有高准确性和较快的识别速度 | 现有的计算工具主要针对特定的真核物种,对于原核体的小蛋白识别选项较少,且性能依然不理想 | 填补原核小蛋白识别方法的空白 | 原核小蛋白的识别和预测 | 机器学习 | NA | 深度学习 | NA | NA | NA |
1322 | 2024-08-05 |
Robust gesture recognition based on attention-deep fast convolutional neural network and surface electromyographic signals
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1306047
PMID:39050666
|
研究论文 | 本文提出了一种基于注意力深度快速卷积神经网络和表面肌电信号的手势识别方法 | 提出了注意力深度快速卷积神经网络模型,通过结合空间和时间特征来提高手势识别的稳健性和稳定性 | 缺少对低密度电极的手势识别性能比较 | 提高在高密度电极移动或损坏情况下的手势识别准确率 | 七名健康受试者和一名截肢者的手势识别 | 数字病理学 | NA | sEMG | 注意力深度快速卷积神经网络 | 信号 | 8个受试者(7名健康者和1名截肢者) |
1323 | 2024-08-05 |
Characterization and Identification of NPK Stress in Rice Using Terrestrial Hyperspectral Images
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0197
PMID:39049839
|
研究论文 | 本研究建立了一个小麦NPK营养胁迫条件的高光谱库,以及时评估作物健康状况 | 提出了一种基于变换器的深度学习网络SHCFTT用于识别高光谱图像中的营养胁迫模式 | NA | 评估水稻在不同营养胁迫条件下的健康状况 | 水稻在14种NPK营养胁迫条件下的反射率曲线 | 数字病理 | NA | 高光谱成像技术 | SHCFTT, SVM, 1D-CNN, 3D-CNN | 图像 | 420张水稻胁迫图像 |
1324 | 2024-08-05 |
Feasibility of direct brain 18F-fluorodeoxyglucose-positron emission tomography attenuation and high-resolution correction methods using deep learning
2024, Asia Oceania journal of nuclear medicine & biology
DOI:10.22038/AOJNMB.2024.74875.1522
PMID:39050241
|
研究论文 | 本研究开发了三种用于大脑18F-氟脱氧葡萄糖正电子发射断层扫描(PET)的衰减校正方法,并评估其精确度 | 首次利用深度学习开发直接和高分辨率衰减校正方法,提供无CT暴露的准确衰减校正 | 样本量较小,仅包含53名和27名患者,可能影响结果的广泛适用性 | 开发并评估大脑PET的衰减校正方法 | 53名接受颅脑磁共振成像(MRI)和计算机断层扫描(CT)的患者,以及27名接受MRI、CT和PET的患者 | 数字病理学 | NA | 深度学习 | U-net | 影像 | 53名患者和27名患者 |
1325 | 2024-08-05 |
Attention Feature Fusion Network via Knowledge Propagation for Automated Respiratory Sound Classification
2024, IEEE open journal of engineering in medicine and biology
IF:2.7Q3
DOI:10.1109/OJEMB.2024.3402139
PMID:38899013
|
研究论文 | 本研究开发了一种基于深度学习的自动化呼吸声音分类系统 | 将知识传播机制整合到CNN模型中,提高了呼吸病自动诊断的有效性 | 研究后仍需进一步的临床验证以确认模型的普适性 | 旨在通过自动化方法提高呼吸疾病早期诊断的准确性 | 该研究对象为1至6岁的小儿患者的呼吸声音数据 | 机器学习 | 呼吸系统疾病 | 深度学习 | 卷积神经网络(CNN) | 音频 | 使用了ICBHI基准数据集和一个更大规模的自收集小儿数据集 |
1326 | 2024-08-05 |
CCL-DTI: contributing the contrastive loss in drug-target interaction prediction
2024-Jan-30, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-024-05671-3
PMID:38291364
|
研究论文 | 本文提出了一种基于对比损失的药物-靶标相互作用预测模型 | 引入对比损失函数以提高深度学习模型在药物-靶标相互作用预测中的性能 | 未提及特定的局限性 | 研究如何通过利用对比损失函数改进药物-靶标相互作用预测模型 | 研究对象为药物分子和蛋白质序列 | 计算机视觉 | NA | 深度学习 | 注意力机制融合模型 | 多模态知识 | 使用四个知名数据集进行评估 |
1327 | 2024-08-05 |
Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy
2024-Jan-05, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad154b
PMID:38091613
|
研究论文 | 该文章提出了一种基于深度学习的框架,用于从剂量分布图预测合成的质量能量转移 (LET) 分布图 | 使用CycleGAN模型显著提高了LET图生成的速度和准确性,优于其他基于GAN的模型 | 使用深度学习模型的有效性在不同的临床设置中可能需要进一步验证 | 旨在改进质子治疗的计划,通过更好地考虑可变的相对生物效能(RBE) | 研究对象为质子治疗中的剂量分布图 | 数字病理学 | NA | 深度学习 | CycleGAN | 剂量分布图 | NA |
1328 | 2024-08-05 |
Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: a two-center study
2024-Jan-03, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.11.01.23297935
PMID:37961086
|
研究论文 | 本研究开发了一个自动化的管道,用于分割小儿弥漫性中线胶质瘤的亚区域,并选择预测患者总生存期的影像组学特征 | 通过使用机器学习和MRI影像组学,该研究为预测小儿病人总生存期提供了一种新的非侵入性方法 | 研究中样本量相对较小,仅涵盖了69名患者,且仅通过两个中心的数据进行验证 | 研究的目的是预测小儿弥漫性中线胶质瘤患者的总生存期 | 研究对象为小儿弥漫性中线胶质瘤患者 | 机器学习 | NA | MRI,机器学习 | 深度学习模型 | 影像 | 53名内部队列和16名外部队列患者 |
1329 | 2024-08-05 |
Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: A two-center study
2024 Jan-Dec, Neuro-oncology advances
IF:3.7Q2
DOI:10.1093/noajnl/vdae108
PMID:39027132
|
研究论文 | 本文开发了一种自动化管道,通过MRI放射组学和机器学习预测儿童弥漫性中线胶质瘤的整体生存率 | 提出了一种新的基于MRI放射组学和深度学习模型的生存率预测方法 | 研究样本量较小,可能影响结果的普适性 | 研究旨在预测儿童弥漫性中线胶质瘤患者的整体生存率 | 研究对象为儿童弥漫性中线胶质瘤患者 | 机器学习 | NA | MRI放射组学 | 深度学习模型 | 医学影像 | 69个样本,53个来自内部队列,16个来自外部队列 |
1330 | 2024-08-05 |
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
2024, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2024.1380459
PMID:39045216
|
研究论文 | 本文提出了一种自动化框架用于早期检测阿尔茨海默病。 | 提出使用Tunicate Swarm Algorithm优化Otsu阈值方法来提高阿尔茨海默病的图像分类准确率。 | 本文未提及特定样本的限制和研究的普适性问题。 | 研究阿尔茨海默病的早期检测方法,以降低死亡率。 | 使用结构磁共振成像(sMRI)图像检测阿尔茨海默病。 | 数字病理学 | 阿尔茨海默病 | 结构磁共振成像(sMRI) | 深度信念网络(DBN) | 图像 | 使用了阿尔茨海默病神经影像倡议(ADNI)和澳大利亚成像、标志物与生活方式旗舰研究(AIBL)数据集 |
1331 | 2024-08-05 |
StripeRust-Pocket: A Mobile-Based Deep Learning Application for Efficient Disease Severity Assessment of Wheat Stripe Rust
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0201
PMID:39044844
|
研究论文 | 本研究提出了一个基于移动设备的深度学习应用程序,用于有效评估小麦条锈病的病害严重性 | StripeRust-Pocket应用程序结合了模型辅助标注和深度学习技术,能够在复杂背景下准确量化病害严重性,并大幅缩短标注时间 | NA | 提供一种高效实用的小麦条锈病严重性评估解决方案 | 小麦条锈病叶片图像 | 计算机视觉 | NA | 深度学习 | StripeRustNet(包含MobileNetV2-DeepLabV3+和ResNet50-DeepLabV3+) | 图像 | 100张田间图像及自收集的数据集 |
1332 | 2024-08-05 |
Shape-position perceptive fusion electronic skin with autonomous learning for gesture interaction
2024, Microsystems & nanoengineering
IF:7.3Q1
DOI:10.1038/s41378-024-00739-9
PMID:39045231
|
研究论文 | 提出了一种感知融合电子皮肤,实现手势交互的自主学习 | 开发了具有生物启发层次结构的感知融合电子皮肤,通过磁致伸缩合金膜的磁化状态实现对关节形状和位置的双重信息感知 | 佩戴应用的计算能力有限,可能影响深度学习网络的部署和多模态传感数据的融合 | 旨在提升可穿戴设备在人机交互中的手势识别和触觉反馈能力 | 研究目标是手部的关节运动与感知信息的映射 | 数字病理学 | NA | NA | 教师模型 | 信号信息 | NA |
1333 | 2024-08-05 |
SSF-DDI: a deep learning method utilizing drug sequence and substructure features for drug-drug interaction prediction
2024-Jan-23, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-024-05654-4
PMID:38262923
|
研究论文 | 本文提出了一种基于药物序列和亚结构特征的药物相互作用预测新模型SSF-DDI | SSF-DDI模型结合了药物序列特征和药物分子图的结构特征,提高了药物相互作用预测的准确性 | NA | 研究旨在提高药物相互作用预测的准确性 | 药物相互作用 | 计算机视觉 | NA | 深度学习 | NA | 真实数据集 | 多个数据集 |
1334 | 2024-08-05 |
TabDEG: Classifying differentially expressed genes from RNA-seq data based on feature extraction and deep learning framework
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0305857
PMID:39037985
|
研究论文 | 本文提出了一种名为TabDEG的模型,用于根据RNA-seq数据预测差异表达基因。 | TabDEG结合了数据增强和基于深度学习的表格数据模型,克服了小样本数据集的传统模型局限。 | 尽管提高了准确性,TabDEG仍然面临RNA-Seq数据标记不足的问题。 | 研究旨在提升RNA-seq数据中差异表达基因的预测能力。 | 研究对象为来自癌症基因组图谱数据库的基因表达数据。 | 机器学习 | 癌症 | RNA-seq,数据增强 | 深度学习模型 | 基因表达数据 | 有限样本数据集,确切样本量未提供 |
1335 | 2024-08-05 |
TemBERTure: advancing protein thermostability prediction with deep learning and attention mechanisms
2024, Bioinformatics advances
IF:2.4Q2
DOI:10.1093/bioadv/vbae103
PMID:39040220
|
研究论文 | 本研究开发了TemBERTure,一个深度学习框架,用于从蛋白质序列预测热稳定性类别和熔融温度 | 引入深度学习和注意力机制,并强调数据多样性对训练强健模型的重要性 | 本研究未提及具体的实验验证或临床应用的限制 | 旨在改进蛋白质热稳定性预测方法,通过深度学习提升准确性 | 蛋白质序列及其热稳定性 | 生物信息学 | NA | 深度学习 | NA | 蛋白质序列 | 涉及来自多种生物的蛋白质序列 |
1336 | 2024-08-05 |
Unveiling the landscape of pathomics in personalized immunotherapy for lung cancer: a bibliometric analysis
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1432212
PMID:39040448
|
研究论文 | 该文章揭示了肺癌个体化免疫疗法中路径组学的研究趋势和前景 | 创新点在于整合人工智能与路径组学进行肺癌组织数字分析,并制定多模态融合模型 | N/A | 阐明路径组学在肺癌个体化免疫疗法中的应用趋势 | 分析2018年至2023年间发表的相关论文及其关键字 | 数字病理学 | 肺癌 | 文献计量学 | N/A | 文章 | 109篇相关论文或综述 |
1337 | 2024-08-05 |
Alzheimer's Disease Prediction Using Fly-Optimized Densely Connected Convolution Neural Networks Based on MRI Images
2024, The journal of prevention of Alzheimer's disease
DOI:10.14283/jpad.2024.66
PMID:39044523
|
研究论文 | 本研究利用飞优化的密集连接卷积神经网络对MRI图像进行阿尔茨海默病预测 | 该论文提出了一种基于元启发式调优的深度学习方法来检测阿尔茨海默病影响区域,并展示了比现有技术更好的性能 | 对于大规模数据处理的时间成本依然较高,具体样本大小未在摘要中说明 | 旨在通过深度学习技术增强阿尔茨海默病的早期和准确诊断 | 本研究关注于阿尔茨海默病患者的MRI图像 | 机器学习 | 阿尔茨海默病 | 深度学习 | 卷积神经网络 | 图像 | Kaggle数据集 |
1338 | 2024-08-05 |
Improvement of accumulated dose distribution in combined cervical cancer radiotherapy with deep learning-based dose prediction
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1407016
PMID:39040460
|
研究论文 | 本研究通过深度学习的剂量预测改善了结合外照射放疗和近距离放疗的宫颈癌放疗的累积剂量分布 | 首次在不知近距离放疗剂量的情况下实现了宫颈癌联合放疗的累积剂量预测 | 研究未探讨各个患者之间存在的个体差异对预测结果的影响 | 优化和评估结合外照射放疗和近距离放疗的宫颈癌放疗的剂量分布 | 参与研究的30名接受宫颈癌联合放疗的患者 | 数字病理学 | 宫颈癌 | 深度学习 | ResNet-101 | 剂量分布数据 | 30名患者 |
1339 | 2024-08-07 |
It is time for some deep learning: a statistical commentary on machine learning for clinical prediction models using imbalanced datasets
2024, Trauma surgery & acute care open
IF:2.1Q2
DOI:10.1136/tsaco-2024-001567
PMID:39040123
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1340 | 2024-08-05 |
CSXAI: a lightweight 2D CNN-SVM model for detection and classification of various crop diseases with explainable AI visualization
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1412988
PMID:39036360
|
研究论文 | 本研究提出了一种基于CNN-SVM的轻量级模型,用于检测和分类各种农作物疾病 | 提出了一种轻量级的CNN-SVM混合模型,实现了较高的准确率和可视化解释 | 研究没有提及样本的数量和多样性,可能影响结果的普遍性 | 旨在提高农业作物疾病的识别和分类效率 | 针对草莓、桃子、樱桃和大豆四种经济作物分类10类疾病 | 计算机视觉 | 农作物疾病 | CNN-SVM | CNN | 图像 | NA |