本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1461 | 2024-08-07 |
CD-Loop: a chromatin loop detection method based on the diffusion model
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1393406
PMID:38770419
|
研究论文 | 本文提出了一种基于扩散模型的深度学习框架CD-Loop,用于预测染色质环 | CD-Loop结合了扩散模型的去噪过程和预训练得到的先验概率,通过密度聚类算法预测染色质环,优于现有方法 | NA | 研究染色质的三维结构 | 染色质环的结构和功能 | 生物信息学 | NA | Hi-C | 扩散模型 | 接触图 | 不同细胞类型、物种和测序深度 |
1462 | 2024-08-07 |
MIFAM-DTI: a drug-target interactions predicting model based on multi-source information fusion and attention mechanism
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1381997
PMID:38770418
|
研究论文 | 本文提出了一种基于多源信息融合和注意力机制的药物-靶点相互作用预测模型MIFAM-DTI | MIFAM-DTI模型通过整合多源信息并利用图注意力网络和多头自注意力机制,自主学习注意力权重,更全面地捕捉序列数据中的信息 | NA | 提高药物-靶点相互作用预测的准确性和效率 | 药物-靶点相互作用的预测 | 机器学习 | NA | 图注意力网络,多头自注意力 | MIFAM-DTI | 特征向量,邻接矩阵 | NA |
1463 | 2024-08-07 |
Deep learning-assisted lesion segmentation in PET/CT imaging: A feasibility study for salvage radiation therapy in prostate cancer
2024, Oncoscience
DOI:10.18632/oncoscience.603
PMID:38770445
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1464 | 2024-08-07 |
BiLSTM-Based Joint Torque Prediction From Mechanomyogram During Isometric Contractions: A Proof of Concept Study
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2024.3399121
PMID:38722723
|
研究论文 | 本研究提出了一种基于双向长短期记忆网络(BiLSTM)的深度学习模型,用于从等长收缩期间记录的时间序列肌机械图(MMG)信号预测踝关节跖屈扭矩,并评估其性能 | 本研究首次提出使用BiLSTM模型从MMG信号预测踝关节扭矩,并展示了其作为量化肌肉力量的潜在工具的可行性 | 模型对个体数据集的敏感性较高,且在某些数据集上的解释方差低于70% | 开发一种实用的工具,用于临床环境中量化肌肉力量 | 踝关节跖屈扭矩的预测 | 机器学习 | NA | NA | BiLSTM | 时间序列信号 | 10名受试者的数据集 |
1465 | 2024-08-07 |
TASA: Temporal Attention With Spatial Autoencoder Network for Odor-Induced Emotion Classification Using EEG
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2024.3399326
PMID:38722724
|
研究论文 | 本文提出了一种名为TASA的深度学习架构,用于使用脑电图(EEG)预测气味诱发的情绪 | TASA采用两阶段学习框架,通过自动编码器模块学习电极间的空间信息,并使用LSTM-MSA捕捉EEG的时间动态 | NA | 研究如何有效学习EEG中的时间动态和空间信息,以检测气味诱发的情绪效价 | 气味诱发的情绪分类 | 机器学习 | NA | 脑电图(EEG) | LSTM, MSA | EEG数据 | NA |
1466 | 2024-08-07 |
Ischemic stroke outcome prediction with diversity features from whole brain tissue using deep learning network
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1394879
PMID:38765270
|
研究论文 | 本研究提出了一种基于全脑多样性特征的缺血性中风结果预测方法,通过深度学习网络提高预测的准确性和效率 | 本研究不使用患者基本信息和病变图像特征,直接从动态磁敏感对比灌注加权成像中提取特征,结合机器和深度学习模型进行预测 | NA | 提高缺血性中风结果预测的准确性和效率 | 缺血性中风的结果预测 | 机器学习 | 中风 | 动态磁敏感对比灌注加权成像(DSC-PWI) | Resnet 18 | 图像 | NA |
1467 | 2024-08-07 |
Data leakage in deep learning studies of translational EEG
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1373515
PMID:38765672
|
研究论文 | 本文探讨了在应用深度神经网络(DNNs)于人类脑电图(EEG)记录以识别多种疾病时,由于数据分割方式导致的数据泄露问题 | 通过比较基于片段和基于受试者的保留方法,揭示了现有研究中普遍存在的数据泄露问题 | 仅限于分析两种数据集(阿尔茨海默病和癫痫发作),可能需要更多数据集来验证结论的普遍性 | 评估和揭示在EEG数据分析中使用深度学习模型时可能存在的数据泄露问题 | 脑电图记录和深度神经网络分类器的性能 | 机器学习 | NA | 深度神经网络(DNNs) | DNN分类器 | 脑电图(EEG)记录 | 涉及两个数据集(一个用于阿尔茨海默病分类,另一个用于癫痫发作分类) |
1468 | 2024-08-07 |
Fusion inception and transformer network for continuous estimation of finger kinematics from surface electromyography
2024, Frontiers in neurorobotics
IF:2.6Q3
DOI:10.3389/fnbot.2024.1305605
PMID:38765870
|
研究论文 | 本文提出了一种名为融合初始和变换器网络(FIT)的新型深度学习模型,用于从表面肌电图(sEMG)连续估计手指运动学 | FIT模型结合了Inception和Transformer网络的优势,有效处理序列数据的局部和全局信息 | NA | 实现稳定、自然和一致的人机交互(HCI)控制 | 从表面肌电图信号中预测手部关节角度的值 | 机器学习 | NA | 深度学习 | 融合初始和变换器网络(FIT) | 表面肌电图信号 | 10名受试者的六种典型手部抓握动作 |
1469 | 2024-08-07 |
FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery
2024, IEEE open journal of engineering in medicine and biology
IF:2.7Q3
DOI:10.1109/OJEMB.2024.3382487
PMID:38766538
|
研究论文 | FetSAM是一种先进的深度学习模型,旨在通过改进胎儿头部超声图像分割来提高产前诊断的精确度 | FetSAM采用了基于提示的学习方法和双损失机制(结合加权DiceLoss和加权Lovasz Loss),并通过AdamW优化和类别权重调整来实现更好的分割平衡 | NA | 提高胎儿头部超声图像分割的准确性,从而提升产前诊断的精确度 | 胎儿头部超声图像 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 最大的胎儿头部指标数据集 |
1470 | 2024-08-07 |
An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries
2024-Jan-16, bioRxiv : the preprint server for biology
DOI:10.1101/2024.01.16.575852
PMID:38293170
|
research paper | 本文介绍了一种名为MAGMA-seq的综合技术,用于定量分析人类抗体Fab库的广泛突变扫描 | MAGMA-seq技术结合了多种抗原和抗体,并使用深度测序确定定量生物物理参数,能够在一个实验中测量多个给定亲本抗体突变体的结合情况 | NA | 旨在通过学习抗体分子识别,设计高亲和力结合物,以对抗几乎任何蛋白质表面 | 研究对象包括人类抗体的Fab库,以及多种抗原和抗体的序列-功能关系 | NA | NA | 深度测序 | NA | 序列数据 | 两个汇集库,包含十个不同人类抗体的突变体 |
1471 | 2024-08-07 |
CylinGCN: Cylindrical structures segmentation in 3D biomedical optical imaging by a contour-based graph convolutional network
2024-01, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文提出了一种基于轮廓的图卷积网络CylinGCN,用于生物医学光学成像中的三维圆柱结构分割 | 将圆柱结构视为三维图,引入了一种新的基于轮廓的图神经网络,能够提取语义特征和复杂拓扑关系,实现连续有效的三维分割 | NA | 开发一种新的方法用于生物医学光学成像中的三维圆柱结构分割 | 生物医学光学成像中的圆柱结构,如血管、气道和肠道 | 计算机视觉 | NA | 图卷积网络(GCN) | 图神经网络 | 三维体积数据 | 两种光学断层成像数据,小动物全身光声断层成像(PAT)和内窥镜气道光学相干断层成像(OCT) |
1472 | 2024-08-07 |
Deep learning for report generation on chest X-ray images
2024-01, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
综述 | 本文综述了深度学习技术在胸部X光图像分析中的应用,特别是使用卷积神经网络(CNN)进行放射报告生成的进展和挑战 | 深度学习技术在胸部X光图像分析中的应用显示出超越人类放射科医生的潜力 | NA | 探讨深度学习技术在胸部X光图像分析中的应用,特别是放射报告生成的进展和挑战 | 胸部X光图像分析 | 计算机视觉 | NA | 卷积神经网络(CNN) | CNN | 图像 | NA |
1473 | 2024-08-07 |
SMILE: Siamese Multi-scale Interactive-representation LEarning for Hierarchical Diffeomorphic Deformable image registration
2024-01, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文提出了一种新的卷积神经网络(CNN),包含孪生多尺度交互表示学习(SMILE)编码器和层次化微分形变(HDD)解码器,用于可变形医学图像配准 | 本文创新性地引入了SMILE编码器和HDD解码器,以及一种新的局部可逆损失(LIL),以促进拓扑保持和局部可逆性,同时保持高配准精度 | 现有深度学习方法存在以下局限:(a) 由于感受野有限,常忽略特征对应关系的显式建模;(b) 对于具有大空间位移的图像对,性能仍然有限;(c) 常忽略拓扑保持和变换的可逆性 | 旨在改进可变形医学图像配准方法,特别是在特征对应关系建模、处理大空间位移图像对以及拓扑保持和变换可逆性方面 | 可变形医学图像配准 | 计算机视觉 | NA | 卷积神经网络(CNN) | CNN | 图像 | 在两个公开的大脑图像数据集上进行了大量实验 |
1474 | 2024-08-07 |
Model-Based Explainable Deep Learning for Light-Field Microscopy Imaging
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3387297
PMID:38656840
|
研究论文 | 本文提出了一种基于模型的可解释深度学习方法,用于光场显微镜成像,以观察神经元网络的信息处理 | 该方法结合了波动光学理论、稀疏表示和非线性优化与人工神经网络,设计了遵循精确信号和优化模型的神经网络架构,并采用了一种结合逐层训练和定制知识蒸馏的新颖训练策略 | NA | 开发一种新的计算方法,充分利用嵌入在物理和光学模型中的领域知识,同时实现高解释性和透明度 | 神经元网络的信息处理 | 计算机视觉 | NA | 光场显微镜成像 | 人工神经网络 | 图像 | 从散射的哺乳动物脑组织中获得的结构和功能光场显微镜数据 |
1475 | 2024-08-07 |
ET-Network: A novel efficient transformer deep learning model for automated Urdu handwritten text recognition
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302590
PMID:38758731
|
研究论文 | 本文提出了一种名为ET-Network的新型高效Transformer深度学习模型,用于自动识别乌尔都语手写文本 | ET-Network模型结合了EfficientNet的特征提取能力和Transformer的语言建模能力,通过自注意力层提取全局和局部特征,以捕捉长距离依赖关系 | NA | 提高乌尔都语手写文本的自动识别准确率 | 乌尔都语手写文本 | 自然语言处理 | NA | Transformer | ET-Network | 文本 | 使用了NUST-UHWR、UPTI2.0和MMU-OCR-21三个数据集进行训练和测试 |
1476 | 2024-08-07 |
Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease
2024, Journal of Alzheimer's disease : JAD
DOI:10.3233/JAD-240098
PMID:38728189
|
研究论文 | 本文提出了一种新的深度学习模型MoFNet,用于整合多组学数据和先前的功能交互,以揭示阿尔茨海默病(AD)的分子机制及其上游遗传贡献者 | 首次模型化了从DNA到RNA和蛋白质的动态信息流,并整合了多组学数据与先前的功能交互 | NA | 旨在通过新颖的多组学数据整合和先前的功能交互,发现功能上连接的多组学特征 | 阿尔茨海默病的分子机制及其上游遗传贡献者 | 机器学习 | 阿尔茨海默病 | 深度学习 | MoFNet | 多组学数据 | 使用了ROS/MAP队列进行评估 |
1477 | 2024-08-07 |
High-precision tracking and positioning for monitoring Holstein cattle
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302277
PMID:38743665
|
研究论文 | 本文提出了一种基于深度学习的跟踪算法,用于在复杂实际场景中进行多目标跟踪,以提高对荷斯坦牛的监测和定位精度 | 提出的多目标跟踪算法在多个性能指标上优于现有顶级跟踪算法,特别是在多目标跟踪准确性、精确性和IDF1方面 | 算法在实际多变的牧场条件下仍面临挑战,如规模变化、不可预测的运动和遮挡问题 | 提高在复杂牧场环境中对荷斯坦牛的监测和定位精度 | 荷斯坦牛的监测和定位 | 计算机视觉 | NA | 深度学习 | CenterTrack算法 | 图像 | NA |
1478 | 2024-08-07 |
Predicting hotspots for disease-causing single nucleotide variants using sequences-based coevolution, network analysis, and machine learning
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302504
PMID:38743747
|
研究论文 | 本文开发了一种基于蛋白质残基接触网络的序列分析方法,结合共进化分析工具和机器学习算法,用于预测疾病相关单核苷酸变异的热点 | 本文创新地整合了多种共进化分析工具和机器学习算法,通过蛋白质残基网络来预测疾病突变的热点,克服了以往方法依赖已知蛋白质结构或未充分考虑残基间相互作用的局限 | NA | 旨在通过高吞吐量准确预测目标蛋白质中的疾病相关突变,以支持个性化医疗 | 疾病相关的单核苷酸变异热点 | 机器学习 | NA | NA | 随机森林、梯度提升和极端梯度提升 | 蛋白质序列 | 107种富含疾病突变的蛋白质 |
1479 | 2024-08-07 |
A machine learning approach to detect potentially harmful and protective suicide-related content in broadcast media
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0300917
PMID:38743759
|
研究论文 | 本研究利用机器学习方法对广播媒体中的自杀相关内容进行分类,以识别其潜在的有害或保护性特征 | 首次应用机器学习模型对大量广播媒体数据进行分类,以符合自杀报道的媒体推荐标准 | 模型性能依赖于训练样本的数量,而非分类任务的难度 | 探索机器学习在识别广播媒体中自杀相关内容的有害或保护性特征方面的应用 | 广播媒体中的自杀相关内容 | 机器学习 | NA | TF-IDF, 线性SVM, BERT | 多数分类器, 基于词频的方法, 深度学习模型 | 文本 | 2519份英语广播媒体转录本 |
1480 | 2024-08-07 |
Specific emitter identification based on multiple sequence feature learning
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0299664
PMID:38748654
|
研究论文 | 本文提出了一种基于多序列特征学习的特定发射机识别算法 | 该算法通过提取通信辐射源发射信号的多序列特征,并构建多序列融合卷积网络进行深度特征提取和分类,有效提高了特定发射机识别的性能 | NA | 解决传统特定发射机识别算法依赖先验知识、泛化能力差以及现有基于深度学习的算法特征选择不佳的问题 | 特定发射机识别算法 | 机器学习 | NA | 卷积神经网络 | CNN | 信号序列 | NA |