深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1809 篇文献,本页显示第 1481 - 1500 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1481 2024-08-05
Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach
2024, Frontiers in computational neuroscience IF:2.1Q3
研究论文 该文章提出了一种新型卷积神经网络架构,以提高脑肿瘤在MRI扫描中的检测准确性和效率 该研究创造性地采用了多任务分类模型,通过单一CNN模型进行多种分类任务,展现了深度学习在医学应用中的巨大潜力 未提及 研究旨在优化脑肿瘤的检测和诊断流程 研究对象为7,023幅被分类为胶质瘤、脑膜瘤、无肿瘤和垂体肿瘤的脑MRI图像 计算机视觉 脑肿瘤 卷积神经网络 CNN 图像 7,023幅脑MRI图像
1482 2024-08-05
A single fast Hebbian-like process enabling one-shot class addition in deep neural networks without backbone modification
2024, Frontiers in neuroscience IF:3.2Q2
研究论文 介绍了一种快速的Hebbian-like过程,使预训练深度学习图像分类器无需修改其主干即可进行一次性类别添加 提出了一种新颖的解释,将权重印记过程的一部分与Hebbian规律对齐,简化了一次性类别添加的方法 尽管方法简单,但其与神经科学的相关性仍然模糊,并且可能干扰原始图像分类 研究深度学习模型的优化,使其能够进行一次性类别添加 预训练的深度学习图像分类器 机器学习 NA 非参数归一化 深度学习图像分类器 图像 NA
1483 2024-08-05
Correction: Exploration of consumer preference based on deep learning neural network model in the immersive marketing environment
2024, PloS one IF:2.9Q1
更正 本文章修正了之前发表的关于沉浸式营销环境下消费者偏好的研究。 NA NA NA NA NA NA NA NA NA NA
1484 2024-08-05
Automatic prediction of non-iodine-avid status in lung metastases for radioactive I131 treatment in differentiated thyroid cancer patients
2024, Frontiers in endocrinology IF:3.9Q2
research paper 本研究提出了一种自动化的非碘摄取状态预测方法,以优化分化型甲状腺癌患者的肺转移治疗 创新点在于开发了一种无创、低辐射的自动化方法,通过深度学习来预测肺转移的非碘摄取状态 研究的可行性需要进一步在多中心的大规模前瞻性研究中验证 本研究旨在开发有效的诊断成像工具,以预测分化型甲状腺癌患者肺转移的非碘摄取状态 研究对象为496例接受过处理的分化型甲状腺癌患者的1962个肺转移病灶 医学影像学 甲状腺癌 深度学习 SE-Net 医学影像 496例分化型甲状腺癌患者的1962个肺转移病灶,以及来自其他两家医院的24例患者的123个肺转移病灶
1485 2024-08-05
A deep neural network and transfer learning combined method for cross-task classification of error-related potentials
2024, Frontiers in human neuroscience IF:2.4Q2
研究论文 本文提出了一种结合深度神经网络和迁移学习的方法,用于错误相关电位的跨任务分类。 创新性地整合卷积层和变换器编码器,并采用迁移学习策略,有效提高了错误相关电位的分类准确性。 目前的方法仍受限于电极信号的高非平稳性和可用ErrPs数据集的有限性。 研究如何通过深度学习提高错误相关电位的分类精度。 该研究的对象是错误相关电位(ErrPs)及其分类。 机器学习 NA 深度学习 卷积神经网络和变换器 EEG信号 NA
1486 2024-08-05
Lung nodule malignancy classification with associated pulmonary fibrosis using 3D attention-gated convolutional network with CT scans
2024-01-13, Journal of translational medicine IF:6.1Q1
研究论文 本研究旨在使用3D注意力门控卷积网络对肺结节的恶性分类进行评估,考虑了相关的肺纤维化因素 提出了一种可视化的3D分类模型,并特别考虑肺纤维化的信息以提高肺结节恶性分类的准确性 本研究基于自有的CT数据集,可能缺乏足够的多样性以代表广泛的人群 评估在胸部CT图像中将纤维化微环境纳入肺结节恶性分类的效果 研究对象为胸部CT图像中的肺结节及其微环境 数字病理学 肺癌 深度学习 3D卷积神经网络 CT图像 使用了内部CT数据集,具体样本大小未详细说明
1487 2024-08-05
Development of a deep learning model for predicting recurrence of hepatocellular carcinoma after liver transplantation
2024, Frontiers in medicine IF:3.1Q1
研究论文 本研究开发了一种深度学习模型,用于预测肝移植后肝细胞癌的复发 提出了一种基于TabNet的预后模型,在预测肝移植后复发方面优于米兰标准 研究未涉及其他潜在影响复发风险的临床因素 旨在建立和验证深度学习模型,更好地指导肝移植后的治疗 评估356例接受肝移植的肝细胞癌患者的复发风险 机器学习 肝细胞癌 深度学习 TabNet 表格数据 356个肝细胞癌患者
1488 2024-08-05
Development of a predictive model for 1-year postoperative recovery in patients with lumbar disk herniation based on deep learning and machine learning
2024, Frontiers in neurology IF:2.7Q3
研究论文 本研究旨在开发一个预测模型,以预测腰椎间盘突出患者术后1年的恢复情况 利用深度学习和机器学习技术开发的预测模型为临床决策提供信息 数据来自于特定时间段的回顾性分析,可能存在样本偏差 开发一个能预测腰椎间盘突出患者术后恢复的模型 470名接受微创手术的住院患者的临床数据 机器学习 NA 深度学习和机器学习 MLP(人工神经网络) 临床数据 470名住院患者
1489 2024-08-05
Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks
2024, PloS one IF:2.9Q1
研究论文 本文介绍了Factor-GAN,一个利用生成对抗网络技术进行因子投资的创新框架 Factor-GAN结合深度学习技术与多因子定价模型,提高了投资策略的精确度和稳定性 样本分析仅限于中国股市,可能影响研究结论的普遍性 探讨深度学习在因子投资中的应用 以70个公司特征为基础的因子数据库进行分析 机器学习 NA 生成对抗网络 NA 金融数据 中国股市的子样本分析
1490 2024-08-05
BAOS-CNN: A novel deep neuroevolution algorithm for multispecies seagrass detection
2024, PloS one IF:2.9Q1
研究论文 文章提出了一种新的深度神经进化算法BAOS-CNN,用于多种海草的检测 该研究通过提出一种名为'Boosted Atomic Orbital Search (BAOS)'的元启发式算法,实现了CNN模型的架构工程和超参数调优的自动化 文章没有提到特定的局限性 研究的目的是提高多种海草图像识别的准确性 研究对象是多种海草图像数据集 计算机视觉 NA 深度学习,CNN CNN 图像 七个进化基础的CNN模型在基于补丁的多种海草数据集上进行训练和评估
1491 2024-08-05
FF-LPD: A Real-Time Frame-by-Frame License Plate Detector With Knowledge Distillation and Feature Propagation
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
研究论文 提出了一种针对实时准确车牌检测的逐帧车牌检测器。 引入了知识蒸馏策略和特征传播方法来提高低级流的性能,并设计了一种空间-时间注意特征传播方法,利用视频中的时间相关性。 未提及具体的局限性 旨在实现实时准确的自动车牌检测。 针对肆意移动车辆的车牌信息进行检测。 计算机视觉 NA 深度学习 NA 视频 NA
1492 2024-08-05
MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning
2024-01, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本文实现了一种深度学习方法,以从多序列中提取和组合特征来进行乳腺癌分类和检测 应用了多参数磁共振成像(mpMRI)的组合,并利用深度学习进行乳腺癌的分类和定位 未详细探讨其他成像技术的结合和比较 检测和分类乳腺癌的有效技术 569例乳腺癌患者的内部队列和125例公共数据集中的外部队列 计算机视觉 乳腺癌 磁共振成像(MRI) 卷积神经网络和长短期记忆网络 图像 内部队列569例,外部队列125例
1493 2024-08-05
A semi-automatic deep learning model based on biparametric MRI scanning strategy to predict bone metastases in newly diagnosed prostate cancer patients
2024, Frontiers in oncology IF:3.5Q2
研究论文 本文开发了一种半自动模型,用于预测新诊断的前列腺癌患者的骨转移。 文章通过结合放射组学、深度学习和临床特征,提出了一种用于骨转移预测的创新模型。 该研究为回顾性研究,可能存在选择偏倚。 研究目的在于通过bpMRI图像预测前列腺癌患者的骨转移。 研究对象为414名新诊断的前列腺癌患者。 数字病理学 前列腺癌 Biparametric MRI (bpMRI) ResNet 医学影像 414名前列腺癌患者(BM组136名,NO-BM组278名)
1494 2024-08-05
Association of Sarcopenia With Toxicity-Related Discontinuation of Adjuvant Endocrine Therapy in Women With Early-Stage Hormone Receptor-Positive Breast Cancer
2024-Jan-01, International journal of radiation oncology, biology, physics
研究论文 本研究探讨了肌少症与早期激素受体阳性乳腺癌女性患者中因毒性引起的辅助内分泌治疗提前终止之间的关联 首次确认了肌少症与早期激素受体阳性乳腺癌患者中毒性相关的辅助内分泌治疗提前终止之间的显著关联 研究未考虑未接受辅助放疗的女性患者,限制了结果的广泛适用性 探讨肌少症对早期激素受体阳性乳腺癌女性患者辅助内分泌治疗的影响 305名接受放疗和辅助内分泌治疗的早期激素受体阳性乳腺癌女性患者 数字病理学 乳腺癌 深度学习模型分析常规横截面放射模拟影像 逻辑回归分析和Cox回归分析 影像数据 305名患者
1495 2024-08-05
BrainCDNet: a concatenated deep neural network for the detection of brain tumors from MRI images
2024, Frontiers in human neuroscience IF:2.4Q2
研究论文 本文提出了一种名为BrainCDNet的新型深度学习架构,用于从MRI图像中检测脑肿瘤。 BrainCDNet通过连接池层和采用'He Normal'初始化处理过拟合问题,增强了图像特征提取和分类的性能。 未提及具体的局限性。 提高脑肿瘤的检测准确性,减少误诊并促进早期诊断。 对比分析健康与病理、不同类型脑肿瘤的MRI图像。 计算机视觉 脑癌 深度学习 NA MRI图像 使用了二元和多分类的MRI数据库进行实验
1496 2024-08-05
CMR-net: A cross modality reconstruction network for multi-modality remote sensing classification
2024, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于卷积神经网络(CNN)的CMR-Net深度学习架构,用于多模态遥感图像数据的分类 创新之处在于设计了一个在多模态特征融合阶段的跨模态重建模块,以有效整合来自多种遥感数据的特征 该研究的局限性未在摘要中提及 本研究旨在解决多模态遥感数据分类中的挑战 本研究的对象为两个多模态遥感数据集,包括Houston2013数据集和Berlin数据集 遥感 NA 卷积神经网络(CNN) 卷积神经网络(CNN) 超光谱和激光雷达数据,合成孔径雷达数据 两个数据集的样本数量未在摘要中具体说明
1497 2024-08-05
METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII
2024-Jan-17, Insights into imaging IF:4.1Q1
研究论文 提出了一种新的质量评分工具METRICS,以评估和提高放射组学研究的质量 首次提出基于专家意见的项目的重要性权重,并采用透明的方法来评估放射组学研究的质量 N/A 评估和提高放射组学研究的质量 国际专家小组对放射组学研究的质量进行评估 数字病理学 N/A N/A N/A N/A 59名专家参与来自19个国家
1498 2024-08-05
Enhancing semantic segmentation in chest X-ray images through image preprocessing: ps-KDE for pixel-wise substitution by kernel density estimation
2024, PloS one IF:2.9Q1
研究论文 本研究提出了一种新的图像预处理技术ps-KDE,以提高胸部X光图像的深度学习语义分割效果 ps-KDE通过基于图像像素在所有图像中的标准化频率来增强图像对比度,进而改善深度学习算法的性能 本研究的局限性在于所使用的数据集的异质性可能影响结果的普适性 研究深度学习算法在胸部X光图像中的器官分割效果 主要研究对象是心脏、左肺、右肺、左锁骨和右锁骨的分割 计算机视觉 肺癌 ps-KDE U-Net 图像 NA
1499 2024-08-05
A novel approach for APT attack detection based on feature intelligent extraction and representation learning
2024, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于特征智能提取和表示学习的APT攻击检测新方法 提出的FIERL模型结合了BiLSTM深度学习网络和注意力网络,创新性地聚合和提取APT IP在网络流量中的异常行为 未提及具体的局限性 旨在实现对APT攻击活动的早期检测和预警 研究对象为APT IP与正常IP的分类 计算机视觉 NA 深度学习 BiLSTM 网络流量数据 NA
1500 2024-08-05
The current landscape of machine learning-based radiomics in arteriovenous malformations: a systematic review and radiomics quality score assessment
2024, Frontiers in neurology IF:2.7Q3
系统评价 本文提供了关于动静脉畸形中使用的放射组学模型的全面总结 综合评估了采用机器学习的放射组学在动静脉畸形管理中的应用情况 所有纳入的研究均为回顾性,且没有进行外部验证 综述放射组学模型在动静脉畸形管理中的诊断、治疗、预后和预测结果的应用 动静脉畸形(AVM) 机器学习 NA 放射组学 NA 医学影像 13个研究
回到顶部