本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1601 | 2024-08-05 |
Quantitative Prediction of Right Ventricular Size and Function From the ECG
2024-Jan-02, Journal of the American Heart Association
IF:5.0Q1
DOI:10.1161/JAHA.123.031671
PMID:38156471
|
研究论文 | 本研究利用深度学习和ECG分析预测右心室大小和功能 | 探索了通过深度学习进行ECG分析以评估右心室功能和大小,填补了传统方法的空白 | 研究限于UK Biobank和一个医疗系统的样本,可能影响结果的普遍适用性 | 研究深度学习在ECG分析中预测右心室功能和大小的能力 | 使用来自UK Biobank和多中心健康系统的患者数据进行模型训练和验证 | 机器学习 | 心血管疾病 | 深度学习 | NA | ECG | UK Biobank (n=42,938), MSHoriginal (n=3,019), MSHvalidation (n=115) |
1602 | 2024-08-05 |
Learning Attention in the Frequency Domain for Flexible Real Photograph Denoising
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3404253
PMID:38809730
|
研究论文 | 该文章提出了一种新的基于频率注意的方法来进行真实图像的去噪处理 | 本文创新性地引入了一种基于频率注意的框架,以全面表征多个频率通道的特征相关性 | 本文未提及具体的局限性 | 旨在解决当前基于CNN的去噪器在处理高频成分时的不足 | 主要研究真实图像去噪的效果和方法 | 计算机视觉 | NA | 深度学习 | 频率注意去噪网络 (FADNet) | 图像 | 在多个真实相机基准数据集上进行评估 |
1603 | 2024-08-05 |
Application value of artificial intelligence algorithm-based magnetic resonance multi-sequence imaging in staging diagnosis of cervical cancer
2024, Open life sciences
IF:1.7Q3
DOI:10.1515/biol-2022-0733
PMID:38867922
|
研究论文 | 本研究探讨了基于深度学习的多序列磁共振成像在宫颈癌分期诊断中的应用价值 | 提出了在DRN模型中加入特征增强层以提高宫颈癌MRI成像特征的信息,并评估了其诊断准确性 | 样本量仅为90例,可能限制研究的广泛适用性 | 探讨深度残差网络模型在宫颈癌分期诊断中的应用效果 | 90名在2019年8月至2021年5月间诊断为宫颈癌的患者 | 医学影像学 | 宫颈癌 | 磁共振成像 (MRI) | 深度残差网络 (DRN) | 医学影像 | 90例宫颈癌患者 |
1604 | 2024-08-05 |
Explaining deep learning-based representations of resting state functional connectivity data: focusing on interpreting nonlinear patterns in autism spectrum disorder
2024, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2024.1397093
PMID:38832332
|
研究论文 | 本研究开发了解释性变分自编码器模型,以分析自闭症谱系障碍中的静息态功能连接数据 | 引入了潜在贡献分数来解释变分自编码器识别的非线性模式 | 解释这些潜在表示仍然面临挑战 | 旨在提高对自闭症谱系障碍脑机制的理解 | 分析1150名参与者(601名健康对照和549名自闭症患者)的rs-fMRI数据 | 数字病理学 | 自闭症谱系障碍 | 变分自编码器(VAE) | NA | 静息态功能性磁共振成像数据(rs-fMRI) | 1150名参与者(601名健康对照,549名自闭症患者) |
1605 | 2024-08-05 |
Hate speech detection with ADHAR: a multi-dialectal hate speech corpus in Arabic
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1391472
PMID:38873176
|
研究论文 | 本文提出ADHAR,一个综合的阿拉伯语多方言、多类别仇恨言论语料库。 | ADHAR数据库维护了方言、类别和仇恨/非仇恨类之间的平衡,提供了一种无偏的评估方法。 | 本文没有提到样本的收集范围或其他可能的语料库限制。 | 研究阿拉伯语的仇恨言论检测。 | ADHAR语料库,包括现代标准阿拉伯语、埃及方言、黎凡特方言、海湾方言和马格里比方言。 | 自然语言处理 | NA | 深度学习 | 经典模型和深度学习模型 | 文本 | 70,369个词 |
1606 | 2024-08-05 |
Interpretable deep learning reveals the role of an E-box motif in suppressing somatic hypermutation of AGCT motifs within human immunoglobulin variable regions
2024, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2024.1407470
PMID:38863710
|
研究论文 | 本文系统研究了E-box基序在抑制人类免疫球蛋白可变区域内AGCT基序的体细胞高突变中的作用 | 提出了一种新的抑制机制,表明E-box转录因子与特定AGCT基序之间的结合与突变频率存在对抗关系 | 未详细探讨其他可能影响突变频率的序列上下文因素 | 揭示E-box基序在调控人类免疫球蛋白变量区域中SHM模式的作用 | 人类免疫球蛋白可变区域内AGCT基序的体细胞高突变数据集 | 机器学习 | NA | 深度学习 | DeepSHM | 基因组数据 | 使用了人类SHM数据集进行系统分析 |
1607 | 2024-08-05 |
Seismic resolution improving by a sequential convolutional neural network
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0304981
PMID:38861574
|
研究论文 | 本文提出了一种通过顺序卷积神经网络提高地震分辨率的方法。 | 创新点在于引入顺序卷积神经网络(SCNN)来实现低分辨率和高分辨率地震信号之间的映射关系。 | 本文未提及具体的限制条件 | 研究旨在提高薄层软岩的地震探测精度。 | 研究对象为用于地震数据处理的薄层软岩。 | 计算机视觉 | NA | 深度学习 | 顺序卷积神经网络(SCNN) | 地震信号 | 低分辨率和高分辨率地震数据集 |
1608 | 2024-08-05 |
MCCM: multi-scale feature extraction network for disease classification and recognition of chili leaves
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1367738
PMID:38863551
|
研究论文 | 本研究提出了一种优化的卷积神经网络模型MCCM,用于辣椒叶疾病的分类和识别。 | 该模型引入了多尺度特征融合模块(MSFFM)和混合通道空间注意机制(MCSAM),显著提高了对多种疾病特征的捕捉能力。 | 模型在实际应用中仍可能面临准确性和应用挑战。 | 旨在提高辣椒叶疾病的分类和识别效果。 | 研究对象为辣椒叶的疾病图像。 | 计算机视觉 | NA | 卷积神经网络(CNN) | MCCM(MCSAM-ConvNeXt-MSFFM) | 图像 | 使用Plant Village数据集进行训练,样本数量未具体说明 |
1609 | 2024-08-05 |
A joint model for lesion segmentation and classification of MS and NMOSD
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1351387
PMID:38863883
|
研究论文 | 本文提出了一种联合模型,用于多发性硬化症(MS)和视神经脊髓炎光谱障碍(NMOSD)的病灶分割和分类 | 创新点在于利用任务间的关联性提出联合模型,同时处理病灶分割和疾病分类任务 | 研究中没有提到样本的多样性和外部验证的不足 | 提高多发性硬化症和视神经脊髓炎光谱障碍的识别和诊断的准确性与速度 | 主要研究对象是多发性硬化症和视神经脊髓炎光谱障碍的病灶 | 计算机视觉 | 多发性硬化症和视神经脊髓炎光谱障碍 | T2-FLAIR MRI成像技术 | 双支路结构的卷积模块和Swin Transformer模块 | 图像 | NA |
1610 | 2024-08-05 |
Sensitivity Decouple Learning for Image Compression Artifacts Reduction
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3403034
PMID:38787669
|
研究论文 | 提出了一种灵敏度解耦学习的方法,以减少图像压缩伪影 | 将压缩图像的内在属性解耦为两种互补特征,以提高图像压缩伪影的减少效果 | NA | 改善图像压缩伪影的减少效果,为下游解析任务提供更好的性能 | 图像压缩伪影 | 计算机视觉 | NA | 对抗训练 | 双重意识引导网络(DAGN) | 图像 | BSD500数据集上的处理,每张图像的处理时间为29.7毫秒 |
1611 | 2024-08-05 |
Technical note: ShinyAnimalCV: open-source cloud-based web application for object detection, segmentation, and three-dimensional visualization of animals using computer vision
2024-Jan-03, Journal of animal science
IF:2.7Q1
DOI:10.1093/jas/skad416
PMID:38134209
|
研究论文 | 本研究开发了一个名为ShinyAnimalCV的开源云端网络应用,用于在动物科学中教授计算机视觉。 | ShinyAnimalCV提供了一个用户友好的界面,便于进行物体分割、检测和三维可视化,是一个创新的教学工具。 | 尽管ShinyAnimalCV提供了易用的界面,但在某些情况下,用户仍可能需要编程和数据分析技能。 | 研究旨在通过开发ShinyAnimalCV来促进动物科学中的计算机视觉教育。 | 本研究的对象是动物科学学生和相关教育者。 | 计算机视觉 | NA | 计算机视觉 | 预训练的计算机视觉模型 | 图像 | 九个使用俯视动物数据的预训练模型 |
1612 | 2024-08-05 |
Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens
2024, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2024.1397968
PMID:38855143
|
研究论文 | 本研究利用大型虚拟筛选来理解SARS-CoV-2与人体免疫系统之间的相互作用。 | 提出了一种新算法GIRAF,用于快速评估蛋白质-蛋白质对接的结合界面,同时比较了基于深度学习的AlphaFold2-Multimer和半物理化学的HADDOCK方法的预测能力。 | 研究的限制未详细说明,但可能存在数据的适用性和通用性的问题。 | 研究SARS-CoV-2和人类细胞因子之间的相互作用,以推动针对新型病毒变异的干预措施的开发。 | 分析64种人类细胞因子与来自六种β冠状病毒的17种核壳蛋白的结合亲和力。 | 数字病理学 | NA | 分子对接工具 | AlphaFold2-Multimer和HADDOCK | NA | 64种细胞因子和17种核壳蛋白 |
1613 | 2024-08-05 |
Utilizing portable electroencephalography to screen for pathology of Alzheimer's disease: a methodological advancement in diagnosis of neurodegenerative diseases
2024, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2024.1392158
PMID:38855641
|
研究论文 | 本研究提出了一种新型的便携式脑电图用于筛查阿尔茨海默病的非侵入性方法 | 该研究结合了便携式脑电图和先进的深度学习技术,以更具成本效益和可及性的方法识别阿尔茨海默病 | 研究样本量较小,需进一步验证方法的有效性和普遍适用性 | 旨在解决阿尔茨海默病诊断中的侵入性和成本问题 | 35名生物标志物验证的阿尔茨海默病患者与35名健康志愿者的脑电图数据 | 数字病理学 | 阿尔茨海默病 | 便携式脑电图 | Vision Transformer (ViT) | 脑电图图像 | 70个样本(35名阿尔茨海默病患者和35名健康志愿者) |
1614 | 2024-08-05 |
Research on building extraction from remote sensing imagery using efficient lightweight residual network
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2006
PMID:38855201
|
研究论文 | 提出了一种高效轻量的残差网络用于从高分辨率遥感影像中自动提取建筑物 | 提出的ELRNet在编码器-解码器结构中采用了轻量特征提取模块和深度分离卷积,以提高建筑提取的准确性与效率 | 该研究依赖于WHU Building数据集进行评估,可能限制了结果的普遍适用性 | 平衡建筑物提取的准确性与计算量 | 高分辨率遥感影像中的建筑物 | 计算机视觉 | NA | 卷积神经网络(CNN) | ELRNet | 图像 | WHU Building数据集 |
1615 | 2024-08-05 |
Deep learning in finance assessing twitter sentiment impact and prediction on stocks
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2018
PMID:38855200
|
研究论文 | 本文研究社交媒体情绪与股市波动之间的关系 | 研究设计了一个专门评估与金融市场相关的推特情绪的模型 | 未提及具体的数据限制或模型局限性 | 量化社交媒体表达的情绪与股市波动之间的相关性 | 社交媒体上的金融相关推文 | 机器学习 | NA | 情绪分析算法 | NA | 文本 | 一个综合的数据集,涉及相关股票的推特讨论 |
1616 | 2024-08-05 |
2023 Beijing Health Data Science Summit
2024, Health data science
DOI:10.34133/hds.0112
PMID:38854991
|
评论 | 2023年北京健康数据科学峰会成功召开,旨在促进健康数据科学领域的协作 | 首次引入摘要竞赛,聚焦于最新的数据科学方法论,尤其是在医疗保健场景中的人工智能应用 | 未提供具体医学研究或数据分析的详细结果 | 推动数据在改善健康结果方面的使用 | 参与健康数据科学研究的研究人员、实践者和利益相关者 | 健康数据科学 | NA | 人工智能 | NA | NA | 61个摘要提交 |
1617 | 2024-08-05 |
Enhancing early breast cancer diagnosis through automated microcalcification detection using an optimized ensemble deep learning framework
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2082
PMID:38855257
|
研究论文 | 该文章提出了一种优化的深度学习集成框架,通过自动微钙化检测来提高早期乳腺癌诊断的准确性 | 引入了一种新的集成模型,通过结合不同架构的优势来增强乳腺癌微钙化检测的准确性和依赖性 | 未能提供具体的样本数量和临床应用案例的广泛性 | 提升乳腺癌早期诊断的准确性和有效性 | 主要研究对象为乳腺微钙化的检测 | 计算机视觉 | 乳腺癌 | 深度学习 | 集成模型(包含AlexNet, GoogLeNet, VGG16, ResNet-50) | 图像 | NA |
1618 | 2024-08-05 |
Retraction: Analysis of psychological characteristics and emotional expression based on deep learning in higher vocational music education
2024, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2024.1433717
PMID:38860053
|
撤回 | 该文章涉及高职音乐教育中基于深度学习的心理特征和情感表达分析 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1619 | 2024-08-05 |
Innovative road distress detection (IR-DD): an efficient and scalable deep learning approach
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2038
PMID:38855249
|
research paper | 这篇文章提出了一种创新的道路损伤检测框架IR-DD,利用YOLOv8算法提升检测精度和实时能力 | 本研究通过结合双向特征金字塔网络(BiFPN)递归特征融合和双向连接,优化多尺度特征的利用,解决了传统方法中的信息损失和梯度问题 | 文章未提及具体的局限性 | 研究的目的是提高道路损伤检测的效率和准确性,以确保安全可靠的交通系统 | 研究对象是道路损伤监测及智能城市和自动驾驶车辆的应用 | 计算机视觉 | NA | YOLOv8 | 双向特征金字塔网络(BiFPN) | 图像 | NA |
1620 | 2024-08-05 |
A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2065
PMID:38855206
|
综述 | 本文系统性地分类和总结了基于EEG的情感识别的最新发展 | 提出了一种全面的分类方法,强调了不同方向对建模方法的需求 | 现有分类较粗略,对潜在应用考虑不足 | 研究基于EEG的情感识别的分类与实际应用 | 多种基于EEG的情感识别模型和方法 | 计算机视觉 | NA | 深度学习 | NA | EEG信号 | NA |