本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1721 | 2024-08-07 |
Differentiation of benign and malignant parotid gland tumors based on the fusion of radiomics and deep learning features on ultrasound images
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1384105
PMID:38803533
|
研究论文 | 本研究旨在基于超声图像构建并比较临床模型、传统放射组学模型、深度学习模型和深度学习放射组学模型在区分良性腮腺肿瘤和恶性腮腺肿瘤中的性能 | 本研究引入了基于超声图像的深度学习放射组学模型,该模型结合了传统放射组学和深度学习特征,显著提高了区分良性腮腺肿瘤和恶性腮腺肿瘤的准确性 | NA | 研究目的是构建和比较不同模型在区分良性腮腺肿瘤和恶性腮腺肿瘤中的性能 | 研究对象是良性腮腺肿瘤和恶性腮腺肿瘤 | 机器学习 | 腮腺肿瘤 | 深度学习 | DenseNet121, VGG19, ResNet50 | 图像 | 526名患者 |
1722 | 2024-08-07 |
Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis
2024, Current computer-aided drug design
IF:1.5Q3
|
研究论文 | 本研究利用网络药理学、深度学习蛋白质修复、分子对接、机器学习结合亲和力估计、分子动力学模拟和MM-PBSA结合自由能估计等方法,探讨了中药小建中汤治疗慢性萎缩性胃炎的作用机制 | 本研究整合了网络药理学、深度学习、分子对接、机器学习、分子动力学模拟和MM-PBSA结合自由能估计等多种技术,为解释中药复杂机制提供了强有力的方法 | NA | 旨在通过药理信息学方法揭示小建中汤治疗慢性萎缩性胃炎的潜在机制 | 中药小建中汤及其治疗慢性萎缩性胃炎的作用机制 | NA | 慢性萎缩性胃炎 | 网络药理学、分子对接、分子动力学模拟 | 深度学习 | 蛋白质 | 关键化合物包括山柰酚、甘草查尔酮A和柚皮素,关键靶点包括AKT1、MAPK1、MAPK14、RELA、STAT1和STAT3 |
1723 | 2024-08-07 |
Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions
2024-01, Journal of nephrology
IF:2.7Q2
DOI:10.1007/s40620-023-01775-w
PMID:37768550
|
综述 | 本文回顾了人工智能在肾病理学中的应用历史,并探讨了未来的发展方向 | 探讨了深度学习在复杂组织病理学数据中的应用,以及混合和协作学习方法的使用 | 研究主要集中在相对简单的任务上,如单染色肾小球分割 | 回顾人工智能在肾病理学中的应用,并展望未来的发展 | 非肿瘤性肾脏组织学样本的自动化图像分析和人工智能算法应用 | 数字病理学 | NA | 深度学习 | NA | 图像 | 76篇原创研究文章 |
1724 | 2024-08-07 |
Melanoma identification and classification model based on fine-tuned convolutional neural network
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241253757
PMID:38798885
|
研究论文 | 本文提出了一种基于微调卷积神经网络的黑色素瘤识别与分类模型,旨在支持医疗物联网应用,通过图像分类技术实现黑色素瘤的早期检测 | 采用卷积神经网络和深度学习技术,通过分析公开的皮肤镜图像数据集,实现了对恶性与良性皮肤病变的高精度区分 | NA | 开发一种用于早期检测黑色素瘤的鲁棒图像分类模型,以支持医疗物联网应用 | 黑色素瘤,一种致命的皮肤癌 | 计算机视觉 | 皮肤癌 | 卷积神经网络 | CNN | 图像 | 包括DermIS的621张图像,DermQuest的1233张图像,以及ISIC2019的25000张图像 |
1725 | 2024-08-07 |
Validation and Feasibility of Ultrafast Cervical Spine MRI Using a Deep Learning-Assisted 3D Iterative Image Enhancement System
2024, Journal of multidisciplinary healthcare
IF:2.7Q2
DOI:10.2147/JMDH.S465002
PMID:38799011
|
研究论文 | 本研究旨在评估使用深度学习辅助的3D迭代图像增强系统(DL-3DIIE)进行超快速(2分钟)颈椎MRI协议的可行性,并与常规MRI协议(6分钟14秒)进行比较 | 采用DL-3DIIE系统,实现了67%的脊柱MRI扫描时间减少,同时获得至少等同于常规协议的图像质量和诊断结果 | NA | 评估超快速颈椎MRI协议的可行性 | 51名患者接受常规和超快速颈椎MRI协议,并由两位放射科医生独立评估图像质量 | 计算机视觉 | NA | MRI | DL-3DIIE系统 | 图像 | 51名患者 |
1726 | 2024-08-07 |
Exploring the Role of Artificial Intelligence in Mental Healthcare: Current Trends and Future Directions - A Narrative Review for a Comprehensive Insight
2024, Risk management and healthcare policy
IF:2.7Q2
DOI:10.2147/RMHP.S461562
PMID:38799612
|
综述 | 本文通过叙述性综述探讨了人工智能在精神健康护理中的当前趋势和未来方向 | AI通过预测分析能力改进治疗计划,并能分析各种精神健康数据集以预测相关模式 | 当前研究在评估医疗专业人员与AI在提供精神健康护理方面的合作有限,且存在伦理问题、网络安全、数据分析多样性不足、文化敏感性和语言障碍等问题 | 旨在讨论AI在精神健康护理中的作用及其面临的挑战和前景 | 人工智能在精神健康护理中的应用,包括筛查、诊断和治疗 | 机器学习 | NA | 机器学习, 深度学习 | NA | 数据集 | 未来研究需要更大样本量和数据集 |
1727 | 2024-08-07 |
Hype or hope? Ketamine for the treatment of depression: results from the application of deep learning to Twitter posts from 2010 to 2023
2024, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2024.1369727
PMID:38800065
|
研究论文 | 通过分析2010年至2023年Twitter上的帖子,研究公众对氯胺酮用于抑郁症治疗的看法 | 使用深度学习和自然语言处理技术分析社交媒体数据,以了解公众对氯胺酮治疗抑郁症的态度 | 研究受限于Twitter用户的年龄和语言偏好,可能无法代表所有人群 | 调查公众对氯胺酮用于抑郁症治疗的看法 | Twitter上关于氯胺酮和抑郁症的帖子 | 自然语言处理 | 抑郁症 | 自然语言处理 | BERT | 文本 | 18,899条独特推文 |
1728 | 2024-08-07 |
A Novel Deep Learning Model for Drug-drug Interactions
2024, Current computer-aided drug design
IF:1.5Q3
|
研究论文 | 本文提出了一种新的深度学习模型,用于预测药物-药物相互作用(DDI) | 使用两个独立的消息传递神经网络(MPNN)模型,每个模型专注于一对药物中的一个药物,以提高DDI预测的准确性 | 需要进一步的研究和验证在更大数据集和实际场景中的通用性和实用性 | 提高药物-药物相互作用预测的准确性 | 药物-药物相互作用 | 机器学习 | NA | 消息传递神经网络(MPNN) | MPNN | 分子特征数据 | 一个综合数据集 |
1729 | 2024-08-07 |
High-Content Image-Based Screening and Deep Learning for the Detection of Anti-Inflammatory Drug Leads
2024-01-15, Chembiochem : a European journal of chemical biology
IF:2.6Q3
DOI:10.1002/cbic.202300136
PMID:37815526
|
研究论文 | 开发了一种基于高内涵图像的筛选方法,结合深度学习技术,用于识别新的抗炎药物先导化合物 | 利用深度神经网络分类器和荧光显微镜探针,通过图像分析识别出能够调节LPS诱导的巨噬细胞表型的化合物 | NA | 旨在通过高内涵图像筛选和深度学习技术,发现新的抗炎药物先导化合物 | 2,259种具有已知作用机制的生物活性化合物 | 机器学习 | NA | 荧光显微镜 | 深度神经网络 | 图像 | 2,259种化合物 |
1730 | 2024-08-07 |
Multi-focused image fusion algorithm based on multi-scale hybrid attention residual network
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302545
PMID:38787800
|
研究论文 | 本文设计了一种基于深度学习的多聚焦图像融合网络,通过无监督学习和多尺度混合注意力残差网络模型,实现端到端的决策图优化 | 引入多尺度混合注意力残差网络模型和上下投影模块,有效利用多尺度特征信息,提高图像融合性能 | NA | 提高图像融合在焦点区域的检测性能 | 多聚焦图像融合 | 计算机视觉 | NA | 多尺度混合注意力残差网络 | 多尺度混合注意力残差网络模型 | 图像 | 两幅不同焦点的源图像 |
1731 | 2024-08-07 |
Enhancing automated strabismus classification with limited data: Data augmentation using StyleGAN2-ADA
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0303355
PMID:38787813
|
研究论文 | 本研究提出了一种基于StyleGAN2-ADA的生成数据增强技术,以克服在设计基于深度学习的自动斜视诊断系统时严重数据限制的挑战 | 本研究采用StyleGAN2-ADA生成模型进行数据增强,相较于传统数据增强技术,显著提升了分类性能 | NA | 旨在通过生成数据增强技术改善在极端数据稀缺情况下的深度学习模型性能 | 斜视分类 | 机器学习 | NA | StyleGAN2-ADA | 生成模型 | 图像 | 数据量严重有限 |
1732 | 2024-08-07 |
Accelerated construction of stress relief music datasets using CNN and the Mel-scaled spectrogram
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0300607
PMID:38787824
|
研究论文 | 本文介绍了一种使用卷积神经网络和Mel频谱图加速构建减压音乐数据集的深度学习方法 | 提出了一种更高效和经济的方法来生成大型减压音乐数据集,通过卷积神经网络直接从音乐中提取关键声音元素 | NA | 解决现有减压音乐选择有限的问题,提高音乐疗法的个性化水平 | 减压音乐数据集的构建和评估 | 机器学习 | NA | 卷积神经网络 | CNN | Mel频谱图 | 临床研究中未明确提及具体样本数量 |
1733 | 2024-08-07 |
Spiritual places: Spatial recognition of Tibetan Buddhist spiritual perception
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0301087
PMID:38781137
|
研究论文 | 本研究聚焦拉萨,探索藏传佛教精神感知与城市空间的融合,通过结合街景数据和深度学习技术,识别并绘制城市景观中藏传佛教精神场所的空间分布 | 采用街景数据和深度学习技术的新颖方法,展示了技术在考察城市发展对文化和宗教景观影响方面的潜力 | NA | 探讨藏传佛教精神感知在城市空间中的融合及其对城市规划、宗教研究和数字人文领域的贡献 | 藏传佛教精神场所在城市空间中的分布及其与城市建筑和文化遗产区的关系 | 数字人文 | NA | 深度学习技术 | NA | 街景数据 | NA |
1734 | 2024-08-07 |
Sampling clustering based on multi-view attribute structural relations
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0297989
PMID:38781184
|
研究论文 | 本文提出了一种基于多视图属性结构关系采样的图聚类方法SLMGC | SLMGC方法通过图滤波去除噪声,基于节点重要性采样降低计算复杂度,并通过图对比正则化增强聚类表示,最终使用自训练聚类算法实现聚类结果 | NA | 解决现有图聚类技术在处理多视图图数据时面临的挑战 | 多视图图数据 | 机器学习 | NA | 图滤波 | NA | 图数据 | NA |
1735 | 2024-08-07 |
A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302294
PMID:38781186
|
研究论文 | 本文提出了一种混合特征加权注意力深度学习方法,结合随机森林算法用于入侵检测系统,以解决类别不平衡问题 | 本文创新性地结合了均值卷积层(MCL)、特征加权注意力(FWA)学习、双向长短期记忆网络(BI-LSTM)和随机森林算法,形成了一个独特的混合模型MCL-FWA-BILSTM,有效提高了入侵检测的准确性和降低了误报率 | 本文未明确提及该方法的局限性 | 研究旨在开发和完善高级算法和技术,如异常检测、成本敏感学习和过采样方法,以有效处理类别不平衡问题,提高入侵检测系统的敏感性和减少误报 | 研究对象为入侵检测系统中的类别不平衡问题 | 机器学习 | NA | 随机森林算法 | CNN, LSTM | 数据集 | 使用了NSL-KDD和UNSW-NB-15两个广泛可用的IDS数据集 |
1736 | 2024-08-07 |
Deep Learning Model Coupling Wearable Bioelectric and Mechanical Sensors for Refined Muscle Strength Assessment
2024, Research (Washington, D.C.)
DOI:10.34133/research.0366
PMID:38783913
|
研究论文 | 本研究提出了一种结合肌电和应变传感器的可穿戴设备,用于同步采集肌肉活动时的表面肌电图和机械信号,并通过基于时间卷积网络(TCN)+ Transformer(Tcnformer)的深度学习模型进行肌肉力量的准确分级和预测。 | 本研究通过结合深度聚类技术,实现了对肌肉力量的25级分类,相较于传统的5级分类更加精细。 | NA | 旨在提高肌肉力量评估的精确性,并可能改善相关的临床诊断和康复结果。 | 肌肉力量评估 | 机器学习 | NA | 表面肌电图, 应变传感器 | 时间卷积网络(TCN)+ Transformer(Tcnformer) | 信号 | NA |
1737 | 2024-08-07 |
Prostate Cancer Detection from MRI Using Efficient Feature Extraction with Transfer Learning
2024, Prostate cancer
IF:2.3Q3
DOI:10.1155/2024/1588891
PMID:38783970
|
研究论文 | 本研究利用深度学习模型(VGG16、VGG19、ResNet50和ResNet50V2)进行特征提取,并结合随机森林分类器诊断前列腺癌 | 采用迁移学习方法,使用少量标注的前列腺癌数据优化深度学习模型,提高模型在不同患者群体和临床情况下的泛化能力 | 研究中提到的数据集限制问题,尽管使用了迁移学习,但仍可能受限于可用数据量 | 探索机器学习技术在前列腺癌诊断中的应用,特别是深度学习模型的特征提取能力 | 前列腺癌的MRI图像 | 机器学习 | 前列腺癌 | 迁移学习 | VGG16, VGG19, ResNet50, ResNet50V2 | 图像 | 未明确提及具体样本数量 |
1738 | 2024-08-07 |
BCSLinker: automatic method for constructing a knowledge graph of venous thromboembolism based on joint learning
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1272224
PMID:38784240
|
研究论文 | 本文提出了一种基于联合学习的深静脉血栓知识图谱自动构建方法BCSLinker | 采用Biaffine Common-Sequence Self-Attention模块同时提取实体和关系,减少错误传播,并使用多标签交叉熵损失减少冗余信息影响 | NA | 构建一个更准确全面的深静脉血栓知识图谱,为诊断、评估和治疗提供参考 | 深静脉血栓患者的电子病历数据 | 自然语言处理 | 深静脉血栓 | 深度学习 | BCSLinker | 文本 | 来自三级医院的深静脉血栓患者电子病历数据 |
1739 | 2024-08-07 |
Tongue feature recognition to monitor rehabilitation: deep neural network with visual attention mechanism
2024, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2024.1392513
PMID:38784768
|
研究论文 | 本文开发了一种新的深度学习架构,专门用于分析和分类舌头特征,包括颜色、形状和舌苔 | 提出的方法解决了基于VGG或ResNet等传统架构的大尺寸问题,从而缓解了过拟合问题 | NA | 旨在推动舌头特征识别技术的发展,最终实现更精确的诊断和更好的患者康复 | 舌头特征的分析和分类 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | NA |
1740 | 2024-08-07 |
Wearable sensors in patient acuity assessment in critical care
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1386728
PMID:38784909
|
研究论文 | 本文探讨了在重症监护环境中使用可穿戴传感器数据与电子健康记录(EHR)中的临床数据相结合,以更精确地评估患者病情严重程度的方法。 | 本研究首次将可穿戴传感器数据与临床数据结合,通过深度学习模型提高了病情严重程度评估的精确度、敏感性和F1分数。 | NA | 研究目的是通过整合可穿戴传感器数据和临床数据,改进重症监护环境中患者病情严重程度的评估。 | 研究对象包括87名佩戴手腕加速度计的患者,以及他们的临床数据。 | 机器学习 | NA | 加速度计 | 深度神经网络模型(VGG, ResNet, MobileNet, SqueezeNet, 自定义Transformer网络) | 加速度计数据,临床数据 | 87名患者 |