深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202401-202401] [清除筛选条件]
当前共找到 1854 篇文献,本页显示第 161 - 180 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
161 2025-03-11
Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种改进的物理信息神经网络(PINN)框架,用于解决蚊子种群动态建模中的ODE优化问题 提出了一种改进的PINN框架,解决了梯度不平衡和刚性ODE问题,并通过逐步扩展训练时间域来解决时间因果关系问题 当前PINN框架在现实世界的ODE系统中还不够成熟,尤其是在具有极端多尺度行为的系统中 改进物理信息神经网络在ODE系统中的应用,特别是用于蚊子种群动态建模 蚊子种群动态建模 机器学习 NA 物理信息神经网络(PINN) PINN 模拟数据 NA
162 2025-03-10
Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer's disease classification based on gradient-weighted class activation mapping
2024, PloS one IF:2.9Q1
研究论文 本文通过应用梯度加权类激活映射(Grad-CAM)等方法,提高了基于fMRI的3D-VGG16网络在阿尔茨海默病(AD)诊断中的可解释性 本文的创新点在于使用多种静息态功能活动图(如ALFF、fALFF、ReHo和VMHC)来降低fMRI数据的复杂性,并采用3D-VGG16网络进行AD分类,同时通过GAP层缓解过拟合问题 本文的局限性在于手动特征提取方法可能增加模型负担,且仅针对AD和正常对照组进行了研究,未涉及其他神经系统疾病 研究目的是探索模型在预测时主要关注的大脑感兴趣区域(ROI),以及AD患者和正常对照组之间这些ROI的差异 研究对象为阿尔茨海默病患者和正常对照组 数字病理学 阿尔茨海默病 fMRI 3D-VGG16 图像 未提及具体样本数量
163 2025-03-08
Addressing grading bias in rock climbing: machine and deep learning approaches
2024, Frontiers in sports and active living IF:2.3Q2
综述 本文探讨了机器学习和深度学习技术在解决攀岩路线难度评定主观性问题中的应用 提出了使用机器学习和深度学习技术来标准化攀岩路线难度评定的方法,特别是通过自然语言处理和循环神经网络算法 现有方法主要集中在路线中心、攀岩者中心和路径查找与生成三种方法,仍需进一步研究以提高准确性和适用性 研究目的是通过机器学习和深度学习技术标准化攀岩路线难度的评定 攀岩路线的难度评定 自然语言处理 NA 机器学习和深度学习 循环神经网络(RNN) 文本 NA
164 2025-03-08
Exploring the Value of MRI Measurement of Hippocampal Volume for Predicting the Occurrence and Progression of Alzheimer's Disease Based on Artificial Intelligence Deep Learning Technology and Evidence-Based Medicine Meta-Analysis
2024, Journal of Alzheimer's disease : JAD
研究论文 本研究探讨了基于人工智能深度学习和循证医学的MRI海马体积测量在预测阿尔茨海默病发生和进展中的价值 结合人工智能深度学习和循证医学方法,利用MRI海马体积测量进行阿尔茨海默病的早期诊断和干预 研究依赖于特定数据库(ADNI和OASIS-brains)的数据,可能限制了结果的普适性 研究MRI海马体积测量在预测阿尔茨海默病发生和进展中的能力 483名阿尔茨海默病患者、756名轻度认知障碍患者和968名正常对照者 数字病理学 老年病 MRI CNN(InceptionResNetv2, Densenet169, SEResNet50) 图像 483名AD患者、756名MCI患者和968名NC
165 2025-03-06
Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
2024, BME frontiers IF:5.0Q1
研究论文 本文介绍了一种基于深度学习和金字塔采样的方法,用于自动分类乳腺癌组织图像中的HER2状态 利用金字塔采样技术分析不同空间尺度的形态特征,有效管理计算负载,并提供对细胞和组织层面细节的详细检查 研究仅基于523个核心图像的数据集,样本量相对较小 提高乳腺癌HER2状态分类的准确性和评估速度 乳腺癌组织图像 数字病理学 乳腺癌 深度学习 NA 图像 523个核心图像
166 2025-03-05
Prediction of cerebral aneurysm rupture risk by machine learning algorithms: a systematic review and meta-analysis of 18,670 participants
2024-Jan-06, Neurosurgical review IF:2.5Q1
系统综述与荟萃分析 本文通过系统综述和荟萃分析评估了机器学习算法在预测脑动脉瘤破裂风险中的有效性和重要性 首次对机器学习算法在脑动脉瘤破裂风险预测中的应用进行了系统综述和荟萃分析,涵盖了18,670名参与者 需要进一步研究以提高机器学习算法在预测脑动脉瘤破裂状态中的诊断性能 评估机器学习算法在预测脑动脉瘤破裂风险中的有效性和重要性 脑动脉瘤患者 机器学习 脑动脉瘤 机器学习算法 CNN, ANN 医学影像数据(DSA, CTA, MRI) 18,670名参与者
167 2025-03-05
AS2LS: Adaptive Anatomical Structure-Based Two-Layer Level Set Framework for Medical Image Segmentation
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
研究论文 本文提出了一种基于自适应解剖结构的两层水平集框架(AS2LS),用于分割具有同心结构的器官,如左心室和眼底 提出了一种新颖的自适应解剖结构的两层水平集表示方法,并结合了两阶段水平集演化算法,提高了复杂医学图像分割的准确性 未提及具体局限性 提高医学图像分割的准确性,特别是针对具有同心结构的器官 医学图像中的器官,如左心室和眼底 计算机视觉 NA 水平集方法 AS2LS(自适应解剖结构的两层水平集框架) 医学图像 未提及具体样本数量
168 2025-03-05
Explainability Enhanced Object Detection Transformer With Feature Disentanglement
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
研究论文 本文提出了一种增强端到端目标检测模型(DETR)可解释性的特征解耦方法 引入了特征解耦方法,通过Tensor奇异值分解(T-SVD)生成特征基,并引入批量平均特征谱惩罚(BFSP)损失来约束特征解耦和平衡语义激活 未提及具体局限性 增强目标检测模型的可解释性 端到端目标检测模型(DETR) 计算机视觉 NA Tensor奇异值分解(T-SVD),批量平均特征谱惩罚(BFSP) DETR, CNN 图像 在两个数据集上进行了广泛实验
169 2025-03-04
Assessment of Protein-Protein Docking Models Using Deep Learning
2024, Methods in molecular biology (Clifton, N.J.)
综述 本文回顾了蛋白质对接模型评估方法的进展,特别关注了将深度学习应用于多种网络架构的最新发展 本文的创新点在于将深度学习技术应用于蛋白质对接模型的评估,以提高模型选择的准确性 本文主要关注深度学习在蛋白质对接模型评估中的应用,未涉及其他可能的评估方法或技术的比较 研究目的是提高蛋白质对接模型评估的准确性,以更好地理解蛋白质-蛋白质相互作用的机制 研究对象是蛋白质对接模型,特别是通过计算方法生成的蛋白质复合物结构模型 机器学习 NA 深度学习 多种网络架构 蛋白质复合物结构模型 NA
170 2025-03-04
Refinement of Docked Protein-Protein Complexes Using Repulsive Scaling Replica Exchange Simulations
2024, Methods in molecular biology (Clifton, N.J.)
研究论文 本文介绍了一种基于排斥偏置的副本交换模拟方法(RS-REMD),用于改进蛋白质-蛋白质复合物结构的预测和评估 提出了一种新的副本交换模拟方法,通过在不同副本模拟中应用不同水平的排斥偏置来改进蛋白质-蛋白质复合物结构的预测和自由能评分 标准分子动力学模拟耗时且通常无法改进对接解决方案,而RS-REMD方法的具体应用效果需要进一步验证 改进蛋白质-蛋白质复合物结构的预测和评估 蛋白质-蛋白质复合物结构 分子动力学模拟 NA 副本交换模拟(RS-REMD) NA 蛋白质结构数据 两个示例应用
171 2025-03-04
Exploiting the Role of Features for Antigens-Antibodies Interaction Site Prediction
2024, Methods in molecular biology (Clifton, N.J.)
研究论文 本文提出了一种混合方法HSS-PPI,用于预测抗体与抗原相互作用界面位点,通过层次化表示蛋白质并使用图卷积网络对氨基酸进行分类 采用HSS-PPI混合方法,结合层次化表示和图卷积网络,创新性地预测抗体与抗原的相互作用界面位点 未明确提及具体局限性 预测抗体与抗原相互作用界面位点,以支持药物和疫苗设计 抗体与抗原的相互作用界面位点 生物信息学 NA 图卷积网络 HSS-PPI, SVM 蛋白质序列和结构数据 未明确提及样本数量
172 2025-03-04
[The 30-Year History of the Japan-Korea Joint Meeting on Medical Physics]
2024, Igaku butsuri : Nihon Igaku Butsuri Gakkai kikanshi = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics
评论 本文回顾了日本-韩国医学物理联合会议30年的历史,探讨了会议对两国医学物理学家交流与合作的贡献 详细记录了日本-韩国医学物理联合会议的30年发展历程,并分析了会议对医学物理领域的推动作用 文章主要关注日本和韩国的医学物理合作,未涉及其他国家的类似合作 回顾日本-韩国医学物理联合会议的历史,探讨其对医学物理领域的贡献 日本和韩国的医学物理学家及其合作 医学物理 NA NA NA NA NA
173 2025-03-02
Deep Learning Identifies High-Quality Fundus Photographs and Increases Accuracy in Automated Primary Open Angle Glaucoma Detection
2024-01-02, Translational vision science & technology IF:2.6Q2
研究论文 本文开发并评估了一种深度学习模型,用于评估眼底照片质量,并定量测量其在独立研究人群中自动化检测原发性开角型青光眼(POAG)的影响 首次将深度学习模型应用于眼底照片质量评估,并展示了其对提高POAG检测准确性的显著影响 研究依赖于特定数据集(DIGS/ADAGES和OHTS),可能限制了模型的泛化能力 提高自动化POAG检测的准确性,减少人工审查的负担 眼底照片 计算机视觉 青光眼 深度学习 深度学习模型 图像 2815张来自DIGS/ADAGES的眼底照片和11,350张来自OHTS的眼底照片
174 2025-03-02
Rapid and accurate classification of mung bean seeds based on HPMobileNet
2024, Frontiers in plant science IF:4.1Q1
研究论文 本研究提出了一种基于深度学习的绿豆种子快速准确分类方法,通过改进MobileNetV2模型,引入了DMS块、ECA块和Mish激活函数,构建了高精度网络模型HPMobileNet 提出了HPMobileNet模型,结合DMS块、ECA块和Mish激活函数,显著提升了绿豆种子分类的准确率 研究未涉及模型在其他作物种子分类中的泛化能力,且未来优化和应用潜力仍需进一步探索 开发一种高效准确的绿豆种子分类方法,推动智能农业技术的发展 八种不同品种的绿豆种子 计算机视觉 NA 深度学习 HPMobileNet(基于MobileNetV2改进) 图像 34,890张绿豆种子图像
175 2025-03-02
A method of deep network auto-training based on the MTPI auto-transfer learning and a reinforcement learning algorithm for vegetation detection in a dry thermal valley environment
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种基于MTPI自动迁移学习和强化学习算法的深度网络自动训练方法,用于干旱热谷环境中的植被检测 结合了MTPI(最大迁移潜力指数方法)和MTSA(多汤普森采样算法)强化学习,用于数据集自动增强和网络自动训练,减少了人工经验和试错成本 现有自动训练方法适应于简单数据集和网络结构,在非结构化环境(如干旱热谷环境)中实用性较低 减少深度学习中的手动干预,提高复杂植被信息收集的效率 干旱热谷环境中的植被 计算机视觉 NA 深度学习,强化学习,迁移学习 FCN, Seg-Net, U-Net, Seg-Res-Net 50 图像 NA
176 2025-03-01
Deep learning for transesophageal echocardiography view classification
2024-01-02, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的多类别经食管超声心动图(TEE)视图分类模型,用于结构化术中和术中TEE成像数据 创新点在于开发了一个能够准确分类标准化TEE视图的深度学习模型,并进行了外部验证 研究的局限性在于仅使用了来自两个医疗中心的TEE视频数据进行训练和验证,样本来源较为单一 研究目的是通过深度学习技术对术中和术中TEE成像数据进行结构化分类 研究对象是术中和术中TEE视频数据 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 来自Cedars-Sinai Medical Center(CSMC)和Stanford University Medical Center(SUMC)的TEE视频数据
177 2025-02-28
Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning
2024, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在开发基于18F-FDG PET/CT图像的深度学习模型,用于预测肺腺癌(LUAD)患者的表皮生长因子受体(EGFR)突变状态 利用深度学习模型预测EGFR突变状态,结合PET/CT图像和临床特征,提高了预测的准确性 研究仅基于两个机构的430名患者,样本量可能不足以代表所有肺腺癌患者 开发预测肺腺癌患者EGFR突变状态的深度学习模型 430名非小细胞肺癌患者 计算机视觉 肺癌 18F-FDG PET/CT成像 Inception V3 图像 430名非小细胞肺癌患者
178 2025-02-27
Among Artificial Intelligence/Machine Learning Methods, Automated Gradient-Boosting Models Accurately Score Intraoral Plaque in Non-Standardized Images
2024, Journal of the California Dental Association
研究论文 本文开发并测试了用于非标准化口腔内菌斑图像自动选择和评分的模型,旨在提高预防试验中的主要结果测量准确性 使用梯度提升模型在非标准化图像中准确评分口腔内菌斑,避免了深度学习模型的高计算和财务成本 未使用深度学习模型,可能限制了模型的复杂性和潜在性能 开发并测试自动图像选择和口腔内菌斑评分模型,以提高预防试验中的主要结果测量准确性 435张来自UCSF/UCLA临床试验的照片中的1650颗菌斑显示的乳牙(牙齿D, E, F, G) 计算机视觉 NA 机器学习算法,包括支持向量机-高斯模型和梯度提升模型 支持向量机-高斯模型,梯度提升分类和回归模型 图像 435张照片中的1650颗乳牙
179 2025-02-26
Exploring the application of knowledge transfer to sports video data
2024, Frontiers in sports and active living IF:2.3Q2
研究论文 本研究探讨了知识转移在体育视频数据中的应用,特别是零样本学习(ZSL)和球员重识别技术 利用预训练的重识别模型提取特征嵌入,在零样本学习环境下评估其在橄榄球联赛和篮网球中的应用,展示了在动态体育环境中部分模型的有效性 非部分模型在背景干扰下表现不佳,且需要大量资源来重现结果 探索更高效的方法,以在不同体育项目中应用AI和计算机视觉技术,减少数据标注和模型训练成本 橄榄球联赛和篮网球的体育视频数据 计算机视觉 NA 零样本学习(ZSL) 预训练的重识别模型 视频 橄榄球联赛近35,000帧和篮网球近14,000帧的广播视频剪辑
180 2025-02-26
Multiomics Research: Principles and Challenges in Integrated Analysis
2024, Biodesign research
综述 本文综述了多组学研究的基本原则和挑战,强调了数据整合在揭示生物系统复杂相互作用和调控机制中的必要性 探讨了深度学习、图神经网络(GNNs)和生成对抗网络(GANs)等最新计算方法在多组学数据合成和解释中的应用,并提出了大语言模型在多组学分析中的潜力 需要大量的计算资源和复杂的模型调优 指导研究人员在多组学研究中导航原则和挑战,以促进整合生物分析的发展 多组学数据 生物信息学 NA 多组学技术(基因组学、转录组学、蛋白质组学、代谢组学等) 深度学习、图神经网络(GNNs)、生成对抗网络(GANs) 多组学数据 NA
回到顶部