本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161 | 2025-01-31 |
Who is WithMe? EEG features for attention in a visual task, with auditory and rhythmic support
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1434444
PMID:39867449
|
研究论文 | 本研究探讨了与注意力最密切相关的EEG数据表示或特征,并评估了它们在处理跨被试变异性方面的能力 | 研究了单通道EEG时间序列的特征,包括时域特征和递归图,以及从多变量时间序列中直接获得的表示,如全局场功率或功能性脑网络,并探索了对不同类型噪声具有鲁棒性的持久同调特征 | 研究结果仅限于WithMe实验范式,需要进一步研究不同任务以提供更全面的理解 | 研究哪些EEG数据表示或特征与注意力最密切相关,并评估它们在处理跨被试变异性方面的能力 | EEG数据 | 脑机接口 | NA | EEG | 支持向量机(SVM), 深度学习架构 | 时间序列数据 | NA |
162 | 2025-01-31 |
A stacking ensemble system for identifying the presence of histological variants in bladder carcinoma: a multicenter study
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1469427
PMID:39868365
|
研究论文 | 本研究旨在构建一个堆叠集成系统,用于简单、高效且非侵入性地识别膀胱癌的组织学变异 | 使用Swin UNETR算法构建交互式深度学习膀胱癌图像分割框架,并结合放射组学特征和深度学习特征构建堆叠集成系统 | 样本量相对较小,且仅基于CT图像进行分析,未涉及其他影像学或分子生物学数据 | 开发一种非侵入性方法,用于早期识别膀胱癌的组织学变异 | 膀胱癌患者 | 数字病理学 | 膀胱癌 | CT成像、放射组学分析、深度学习 | Swin UNETR、堆叠集成模型 | CT图像 | 训练集410名患者,测试集60名患者 |
163 | 2025-01-31 |
Deep learning-enabled exploration of global spectral features for photosynthetic capacity estimation
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1499875
PMID:39872203
|
研究论文 | 本研究提出了一种基于深度学习的模型,通过增强的可解释性和全局光谱特征挖掘来准确估计光合能力 | 提出了一种基于注意力和植被指数计算的深度学习模型,用于全局光谱特征挖掘,提高了模型的可解释性和准确性 | 未明确提及具体局限性 | 准确估计光合能力 | 植被的光谱特征 | 机器学习 | NA | 深度学习 | 基于注意力的深度学习模型 | 光谱数据 | NA |
164 | 2025-01-31 |
Contrastive learning with transformer for adverse endpoint prediction in patients on DAPT post-coronary stent implantation
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1460354
PMID:39872877
|
研究论文 | 本研究提出了一种基于对比学习和Transformer的新方法,用于预测冠状动脉支架植入后接受双抗血小板治疗(DAPT)患者的不良事件 | 结合对比学习和Transformer架构,通过多头注意力机制优化特征表示,提升多时间间隔预测的准确性 | 研究依赖于回顾性数据,可能存在选择偏倚,且未进行外部验证 | 提高冠状动脉支架植入后DAPT患者不良事件的预测准确性 | 接受药物洗脱支架(DES)植入的成年患者 | 机器学习 | 心血管疾病 | 对比学习 | Transformer | 临床数据 | 19,713名成年患者 |
165 | 2025-01-30 |
A deep learning model for carotid plaques detection based on CTA images: a two stepwise early-stage clinical validation study
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1480792
PMID:39871993
|
研究论文 | 本研究开发了一种基于CTA图像的深度学习模型,用于颈动脉斑块检测,并评估了该模型在临床应用中的可行性和价值 | 结合ResUNet与Pyramid Scene Parsing Network (PSPNet)增强斑块分割,并通过两步早期临床验证研究模拟真实临床斑块诊断场景 | 研究为回顾性设计,可能影响结果的普遍性 | 开发并验证一种基于CTA图像的深度学习模型,用于颈动脉斑块的检测 | 颈动脉粥样硬化斑块患者 | 计算机视觉 | 心血管疾病 | CTA成像 | ResUNet与PSPNet结合 | 图像 | 647名患者(475名训练,86名验证,86名测试) |
166 | 2025-01-04 |
Transfer Learning With Active Sampling for Rapid Training and Calibration in BCI-P300 Across Health States and Multi-Centre Data
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2024.3420960
PMID:38949927
|
研究论文 | 本文提出了一种基于主动采样的迁移学习方法,用于在脑机接口(BCI)P300波检测中快速训练和校准,适用于不同健康状况和多中心数据 | 提出了基于Poison Sampling Disk(PDS)的主动采样(AS)方法,用于自适应迁移学习,显著提高了分类精度和训练效率 | 研究仍面临处理来自不同设备、受试者、多中心及健康与患者群体的多样性和不平衡数据集的挑战 | 提高脑机接口(BCI)P300波检测的分类精度和训练效率,适应不同健康状况和多中心数据 | 脑机接口(BCI)P300波检测 | 机器学习 | NA | 迁移学习,主动采样(AS) | 卷积神经网络(CNN) | 神经数据 | 两个不同的国际复制数据集 |
167 | 2025-01-28 |
Pose analysis in free-swimming adult zebrafish, Danio rerio : "fishy" origins of movement design
2024-Jan-01, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.31.573780
PMID:38260397
|
研究论文 | 本文通过无标记跟踪和深度学习技术,研究了成年斑马鱼自由游泳时的典型姿势,并分析了其运动设计的进化意义 | 利用DeepLabCut和B-SOiD机器学习软件进行无标记跟踪和多变量时间序列分析,揭示了斑马鱼运动中的稳定目标姿势和过渡姿势 | 研究仅基于12只斑马鱼的数据,样本量较小,可能限制了结果的普适性 | 研究斑马鱼自由游泳时的姿势,以验证运动设计中最小化主动控制的假设 | 成年斑马鱼(Danio rerio) | 计算机视觉 | NA | DeepLabCut(深度学习姿势估计工具包),B-SOiD(无监督多变量时间序列分析软件) | 深度学习 | 视频 | 12只成年斑马鱼,14,000帧连续视频 |
168 | 2025-01-26 |
Advancing precision agriculture with deep learning enhanced SIS-YOLOv8 for Solanaceae crop monitoring
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1485903
PMID:39850216
|
研究论文 | 本文提出了一种改进的SIS-YOLOv8模型,用于提高复杂农业气候下的作物病害监测效率 | 引入了三个关键模块:Fusion-Inception Conv模块、C2f-SIS模块和SPPF-IS模块,以增强模型在复杂背景下的特征提取能力和泛化能力,同时通过Dep Graph剪枝方法减少了模型参数 | 模型在复杂气候条件下的鲁棒性仍需进一步验证,且未涉及其他作物或病害的测试 | 提高农业作物病害监测的自动化和精确性 | 马铃薯和番茄的病害监测 | 计算机视觉 | NA | 深度学习 | SIS-YOLOv8 | 图像 | NA |
169 | 2025-01-26 |
Monitoring of agricultural progress in rice-wheat rotation area based on UAV RGB images
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1502863
PMID:39850210
|
研究论文 | 本研究提出了一种基于无人机RGB图像和深度学习技术的精确监测稻麦轮作区农业进展的方法 | 结合无人机图像分析技术和深度学习技术,提出了一种新的农业进展监测方法,通过特征相关性分析去除冗余特征,并提出了适合农业进展分类的激活层特征,提高了分类准确性 | 未提及具体的研究区域和样本量,可能限制了方法的普适性 | 提高稻麦轮作区农业进展的实时监测效率 | 稻麦轮作区的农业进展 | 计算机视觉 | NA | 无人机图像分析技术、深度学习技术 | 随机森林模型、ResNet50 | RGB图像 | NA |
170 | 2025-01-26 |
LiDAR point cloud denoising for individual tree extraction based on the Noise4Denoise
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1490660
PMID:39850219
|
研究论文 | 本文介绍了一种名为DEN4的无监督深度学习点云去噪算法,旨在提高LiDAR点云中单棵树分割的准确性 | DEN4引入了多级噪声分离模块,有效区分信号和噪声,提高了信噪比(SNR)并减少了误差 | NA | 提高LiDAR点云中单棵树分割的准确性 | LiDAR点云数据 | 计算机视觉 | NA | 深度学习 | NA | 点云数据 | 60个样本数据集 |
171 | 2025-01-26 |
Study on the application of deep learning artificial intelligence techniques in the diagnosis of nasal bone fracture
2024, International journal of burns and trauma
IF:1.4Q3
DOI:10.62347/VCJP9652
PMID:39850782
|
研究论文 | 本文探讨了深度学习人工智能技术在鼻骨骨折诊断中的应用,通过三维重建颌面部CT图像来评估鼻骨骨折的识别及其临床诊断意义 | 首次将YOLOX检测模型与GhostNetv2分类模型结合,应用于鼻骨骨折的自动识别,并验证了AI辅助诊断在提高诊断准确率、敏感性和特异性方面的有效性 | 样本量较小(82名患者),且仅基于单一机构的回顾性数据,可能影响模型的泛化能力 | 评估深度学习人工智能技术在鼻骨骨折诊断中的应用效果 | 39名正常鼻骨患者和43名鼻骨骨折患者的颌面部CT三维重建图像 | 计算机视觉 | 鼻骨骨折 | 深度学习 | YOLOX + GhostNetv2 | CT图像 | 82名患者(39名正常,43名骨折),共247张图像 |
172 | 2025-01-26 |
Dynamic-budget superpixel active learning for semantic segmentation
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1498956
PMID:39850848
|
研究论文 | 本文提出了一种动态预算超像素查询策略,用于提高语义分割任务中区域主动学习算法的查询效率 | 提出了一种新颖的动态预算超像素查询策略,能够根据图像中的高不确定性超像素数量动态调整查询预算,从而提高查询效率 | 未提及具体局限性 | 提高语义分割任务中区域主动学习算法的数据效率 | 语义分割任务中的图像数据 | 计算机视觉 | NA | 主动学习 | NA | 图像 | 两个数据集:农业领域图像数据集和Cityscapes数据集 |
173 | 2025-01-26 |
Detecting anomalies in smart wearables for hypertension: a deep learning mechanism
2024, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2024.1426168
PMID:39850864
|
研究论文 | 本文提出了一种结合ResNet和LSTM的新型神经网络架构ResNet-LSTM,用于从生理信号(如心电图和光电容积描记图)中预测血压,以改善远程医疗中的健康监测 | 结合ResNet的特征提取能力和LSTM的序列数据处理能力,提出了一种新的神经网络架构ResNet-LSTM,用于提高血压预测的准确性 | 计算成本较高(约4,375 FLOPs),且需要进一步优化实时分析和异常检测模型 | 通过深度学习技术改进智能健康监测系统,特别是在远程地区,以实现非侵入性的血压预测 | 生理信号(如心电图和光电容积描记图) | 机器学习 | 心血管疾病 | 深度学习 | ResNet-LSTM | 生理信号数据 | NA |
174 | 2025-01-25 |
ID3RSNet: cross-subject driver drowsiness detection from raw single-channel EEG with an interpretable residual shrinkage network
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1508747
PMID:39844854
|
研究论文 | 本文提出了一种名为ID3RSNet的新型可解释残差收缩网络,用于从单通道EEG信号中进行跨受试者驾驶员嗜睡检测 | 提出了一种结合注意力机制的残差收缩构建单元,用于自适应特征重新校准和软阈值去噪,并引入了基于EEG的类激活图(ECAM)可解释方法,以可视化分析样本学习模式 | NA | 开发一种无需校准的驾驶员嗜睡检测系统,使用单通道EEG信号 | 驾驶员嗜睡检测 | 机器学习 | NA | EEG信号处理 | ID3RSNet(可解释残差收缩网络) | 单通道EEG信号 | NA |
175 | 2025-01-25 |
Revolutionizing diagnosis of pulmonary Mycobacterium tuberculosis based on CT: a systematic review of imaging analysis through deep learning
2024, Frontiers in microbiology
IF:4.0Q2
DOI:10.3389/fmicb.2024.1510026
PMID:39845042
|
系统综述 | 本文综述了基于深度学习的CT成像分析在肺结核诊断中的应用,评估了其诊断准确性,并探讨了当前面临的挑战和未来研究方向 | 本文首次系统评估了深度学习在基于CT的肺结核诊断中的应用,并提出了数据稀缺性、模型泛化性、可解释性和伦理问题等关键挑战 | 研究仅纳入了7篇相关文献,样本量较小,且未进行定量分析 | 评估深度学习在基于CT的肺结核诊断中的准确性,并探讨其应用前景和挑战 | 肺结核(PTB)患者 | 计算机视觉 | 肺结核 | 深度学习(DL) | NA | CT图像 | 7篇相关文献 |
176 | 2025-01-25 |
A multi-modal multi-branch framework for retinal vessel segmentation using ultra-widefield fundus photographs
2024, Frontiers in cell and developmental biology
IF:4.6Q1
DOI:10.3389/fcell.2024.1532228
PMID:39845080
|
研究论文 | 本文提出了一种多模态多分支框架M3B-Net,用于提高超广角眼底照片中的视网膜血管分割精度 | M3B-Net框架结合了眼底荧光血管造影(FFA)图像,通过选择性融合模块(SFM)、局部感知融合模块(LPFM)和注意力引导上采样模块(AUM)提升分割性能 | 未明确提及具体局限性 | 提高超广角眼底图像中视网膜血管的分割精度,以支持疾病分析 | 超广角眼底照片中的视网膜血管 | 计算机视觉 | NA | 深度学习 | M3B-Net(多模态多分支框架) | 图像(超广角眼底照片和FFA图像) | 未明确提及样本数量 |
177 | 2025-01-25 |
A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1479855
PMID:39845096
|
系统综述 | 本文系统综述了墨西哥在机器学习和深度学习领域的发展及其应用,涵盖了多个领域 | 提供了墨西哥在机器学习和深度学习领域的全面信息,包括趋势、空间位置、机构、出版问题、主题领域、算法应用和性能指标 | 主要关注墨西哥的应用,可能缺乏对其他国家的比较分析 | 提供墨西哥在机器学习和深度学习领域的应用和发展情况 | 120篇原始研究论文 | 机器学习, 深度学习 | NA | NA | 人工神经网络(ANN), 随机森林(RF), 支持向量机(SVM) | NA | 120篇原始研究论文 |
178 | 2025-01-25 |
DLBWE-Cys: a deep-learning-based tool for identifying cysteine S-carboxyethylation sites using binary-weight encoding
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1464976
PMID:39845187
|
研究论文 | 本文介绍了一种名为DLBWE-Cys的深度学习工具,用于准确识别蛋白质序列中的半胱氨酸S-羧乙基化位点 | 开发了一种新的深度学习模型DLBWE-Cys,结合了CNN、BiLSTM、Bahdanau注意力机制和全连接神经网络,并采用了专门设计的Binary-Weight编码方法 | 目前尚无其他计算工具能准确预测这些位点,这给该领域的研究带来了挑战 | 准确识别半胱氨酸S-羧乙基化位点,以阐明其在自身免疫疾病中的功能机制 | 蛋白质序列中的半胱氨酸S-羧乙基化位点 | 机器学习 | 自身免疫疾病 | 深度学习 | CNN, BiLSTM, Bahdanau attention, FNN | 蛋白质序列数据 | NA |
179 | 2025-01-25 |
A CT-based deep learning model for preoperative prediction of spread through air spaces in clinical stage I lung adenocarcinoma
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1482965
PMID:39845323
|
研究论文 | 本文开发并验证了一种基于CT的深度学习模型,用于非侵入性预测临床I期肺腺癌的气道扩散(STAS),并与传统的临床语义模型进行了预测性能比较 | 采用Swin Transformer架构开发深度学习模型,用于预测STAS,其性能优于传统的临床语义模型 | 研究为回顾性设计,可能引入选择偏差,且样本量相对有限 | 开发并验证一种深度学习模型,用于预测临床I期肺腺癌的STAS | 513例经病理证实的I期肺腺癌患者 | 数字病理 | 肺癌 | CT扫描 | Swin Transformer | 图像 | 513例患者(训练队列386例,验证队列127例) |
180 | 2025-01-25 |
Deep CNN ResNet-18 based model with attention and transfer learning for Alzheimer's disease detection
2024, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2024.1507217
PMID:39845347
|
研究论文 | 本文提出了一种基于ResNet-18的深度学习模型,结合深度卷积和Squeeze and Excitation (SE)模块,用于阿尔茨海默病的检测 | 提出了一种结合SE模块的ResNet-18模型,减少了调参需求,并在小样本和不平衡数据集上表现优异 | 医疗数据收集成本高且涉及伦理问题,小数据集容易导致成本函数的局部最小值问题,类不平衡也会降低性能 | 开发一种有效的深度学习模型用于阿尔茨海默病的检测 | 阿尔茨海默病(AD)、认知正常(CN)和轻度认知障碍(MCI)患者 | 计算机视觉 | 阿尔茨海默病 | 深度卷积、Squeeze and Excitation (SE)模块、迁移学习 | ResNet-18 | 图像 | 未明确说明样本数量 |