本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1801 | 2024-08-07 |
Automated system for training and assessing reaching and grasping behaviors in rodents
2024-01-01, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2023.109990
PMID:37866457
|
研究论文 | 本文介绍了一种名为PANDA系统的自动化系统,用于训练和评估啮齿动物的到达、抓握和拉扯行为,并同步神经数据分析 | 该系统通过自动化训练过程显著提高了性能,并使用深度学习技术简化了视频评估,自动将到达动作分割为不同的到达/拉扯阶段 | NA | 研究运动控制、动机、感觉运动整合和运动障碍 | 啮齿动物的到达、抓握和拉扯行为 | NA | 帕金森病、中风 | NA | NA | 视频 | 在15分钟内,啮齿动物拉扯超过100米 |
1802 | 2024-08-07 |
DeepSSM: A blueprint for image-to-shape deep learning models
2024-Jan, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2023.103034
PMID:37984127
|
研究论文 | 本文提出了一种基于深度学习的框架DeepSSM,用于从医学图像中直接推断出低维形状描述符及其相关形状表示 | DeepSSM避免了传统模型所需的繁重手动预处理和分割步骤,显著提高了计算时间,并引入了基于模型的数据增强策略来解决形状建模应用中的数据稀缺问题 | NA | 开发一种深度学习框架,用于直接从3D图像中推断出统计形状表示 | 医学图像中的低维形状描述符及其相关形状表示 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 使用了三个医学数据集 |
1803 | 2024-08-07 |
Multimodal deep learning-based drought monitoring research for winter wheat during critical growth stages
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0300746
PMID:38722916
|
研究论文 | 本文针对传统干旱监测方法的滞后性和局限性,提出了一种基于多模态深度学习的冬小麦干旱胁迫监测S-DNet模型 | 结合冬小麦的田间干旱表型特征、气象因素和物联网技术,整合气象干旱指数SPEI和深度图像学习数据,构建了多模态深度学习模型S-DNet,提高了干旱识别的准确性和泛化能力 | NA | 旨在解决传统干旱监测方法的不足,实现对冬小麦干旱胁迫的非破坏性、准确和快速监测 | 冬小麦在关键生长阶段的干旱胁迫 | 机器学习 | NA | 深度学习 | DenseNet-121 | 图像 | 涉及冬小麦在拔节-抽穗、抽穗-开花和开花-成熟阶段的干旱胁迫图像数据集 |
1804 | 2024-08-07 |
Natural language processing augments comorbidity documentation in neurosurgical inpatient admissions
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0303519
PMID:38723044
|
研究论文 | 研究使用自然语言处理技术识别神经外科住院患者常见并发症的可行性 | 采用自然语言处理技术,通过机器学习和深度学习算法,从放射学报告中可靠地识别常见的神经外科并发症 | 研究仅限于单一医院的神经外科服务和急诊部门,样本量相对较小 | 验证自然语言处理技术能否仅通过住院患者头部影像的文本报告识别两种常见的神经外科并发症 | 神经外科住院患者的头部影像报告 | 自然语言处理 | NA | 自然语言处理 | 随机森林分类器 | 文本 | 979份CT或MRI脑部扫描报告,其中76份用于子集比较 |
1805 | 2024-08-07 |
Lumbar spine MRI annotation with intervertebral disc height and Pfirrmann grade predictions
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302067
PMID:38728318
|
研究论文 | 本文提出了一种自动标注腰椎间盘高度和退变程度的方法,通过使用Pfirrmann分级系统量化退变状态 | 采用了ResNet-50模型和集成决策树分类器组合,实现了对腰椎间盘MRI图像的高度和Pfirrmann等级的自动预测 | NA | 开发一种高效准确的腰椎间盘MRI自动标注方法 | 腰椎间盘及其退变状态 | 计算机视觉 | 腰椎疾病 | 深度学习 | ResNet-50 | 图像 | 515个MRI研究 |
1806 | 2024-08-07 |
Predicting drug-Protein interaction with deep learning framework for molecular graphs and sequences: Potential candidates against SAR-CoV-2
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0299696
PMID:38728335
|
研究论文 | 本文提出了一种基于注意力机制的深度学习框架,用于预测药物与蛋白质的相互作用,并筛选出针对SARS-CoV-2的潜在候选药物。 | 该研究利用深度学习框架GraphDPI-3CL,通过分子图和序列数据,实现了对3CLpro酶的高效预测,并发现了具有高结合亲和力的10种分子。 | NA | 开发针对SARS-CoV-2的广谱抗病毒药物。 | SARS-CoV-2的3CLpro酶及其潜在的抗病毒药物。 | 机器学习 | COVID-19 | 深度学习 | 注意力机制 | 分子图和序列数据 | 训练数据集包含114,555个化合物,筛选数据集包含276,003个化合物 |
1807 | 2024-08-07 |
Short-term prediction of PM2.5 concentration by hybrid neural network based on sequence decomposition
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0299603
PMID:38728371
|
研究论文 | 本研究提出了一种新的混合预测模型MIC-CEEMDAN-CNN-BiGRU,用于基于24小时历史数据窗口的PM2.5短期预测 | 该模型结合了最大信息系数(MIC)特征选择、完整集合经验模态分解与自适应噪声(CEEMDAN)、卷积神经网络(CNN)和双向循环门控神经网络(BiGRU),以优化预测准确性 | NA | 准确预测PM2.5浓度,以减轻空气污染 | PM2.5浓度 | 机器学习 | NA | CEEMDAN, CNN, BiGRU | CNN, BiGRU | 时间序列数据 | 使用2016年北京PM2.5监测数据 |
1808 | 2024-08-07 |
Application of artificial intelligence for the classification of the clinical outcome and therapy in patients with viral infections: The case of COVID-19
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-230917
PMID:37840512
|
研究论文 | 本文研究了利用人工智能技术对病毒感染患者的临床结果和治疗进行分类,特别是针对COVID-19的情况 | 本研究的创新之处在于不仅分类疾病的存在,还包括疾病严重程度的分类,为患者分诊期间的关键决策支持系统奠定了基础 | NA | 旨在提高诊断、预测和个性化治疗,特别是针对不同临床严重程度(轻度、中度和重度)的患者 | 病毒感染患者,特别是COVID-19患者 | 机器学习 | COVID-19 | 人工神经网络 | 深度学习 | 数据 | 1000名患者 |
1809 | 2024-08-07 |
Lung cancer detection based on computed tomography image using convolutional neural networks
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-230810
PMID:37955065
|
研究论文 | 本研究利用卷积神经网络(CNNs)对基于计算机断层扫描(CT)图像的肺部肿瘤进行良恶性分类 | 采用基于GoogLeNet架构的深度学习方法,最大化图像推断并最小化人工控制 | NA | 开发一种深度学习方法,用于通过计算机断层扫描图像诊断和分类肺部肿瘤 | 肺部肿瘤的良恶性分类 | 计算机视觉 | 肺癌 | 卷积神经网络(CNNs) | CNN | 图像 | 4459张CT扫描图像(良性2242张,恶性2217张) |
1810 | 2024-08-07 |
Coronary heart disease classification using deep learning approach with feature selection for improved accuracy
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-231807
PMID:38339946
|
研究论文 | 本研究利用LASSO技术进行特征选择,开发了一种深度卷积神经网络(CNN)模型,用于冠状动脉疾病(CHD)的分类,以提高准确性 | 本研究采用了LASSO技术进行特征选择,并开发了一种改进的CNN模型,该模型在CHD数据集上实现了99.36%的准确率,相较于以往研究的80%至92%有显著提升 | NA | 开发和验证一种用于冠状动脉疾病分类的深度学习模型,以提高诊断准确性 | 冠状动脉疾病(CHD)的分类 | 机器学习 | 心血管疾病 | LASSO技术 | CNN | 数据集 | 使用了NHANES数据集中的49个特征 |
1811 | 2024-08-07 |
Implemented classification techniques for osteoporosis using deep learning from the perspective of healthcare analytics
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-231517
PMID:38393861
|
研究论文 | 本文研究了使用深度学习技术从医疗分析角度对骨质疏松症进行分类的方法 | 采用深度卷积神经网络(DCNN)和松鼠搜索算法(SSA)优化网络权重,提高了分类准确性 | NA | 研究如何通过深度学习算法提高骨质疏松症的分类准确性 | 骨质疏松症的分类和诊断 | 机器学习 | 骨质疏松症 | 深度学习 | 深度卷积神经网络(DCNN) | 图像 | NA |
1812 | 2024-08-07 |
HBNET: A blended ensemble model for the detection of cardiovascular anomalies using phonocardiogram
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-231290
PMID:38393859
|
研究论文 | 研究提出了一种名为HBNET的混合集成模型,用于通过心音图检测心血管异常 | 该研究首次使用混合深度学习模型和softmax回归开发了一种新的混合集成模型,用于区分成人和儿童心音的五个不同类别 | 研究中未明确提及模型的局限性 | 旨在开发一种新的混合集成模型,以提高心音图分类的准确性和可靠性,并创建一个全面的5类儿童心音图数据集 | 成人和儿童的心音图 | 机器学习 | 心血管疾病 | 混合深度学习模型 | CNN-BiLSTM和CNN-LSTM | 音频信号 | 成人和儿童的心音图数据集 |
1813 | 2024-08-07 |
The effect of the re-segmentation method on improving the performance of rectal cancer image segmentation models
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-230690
PMID:38517809
|
研究论文 | 本文研究了重新分割方法对直肠癌图像分割模型性能的提升效果 | 提出了使用重新分割方法手动修正模型分割区域并将其用于训练,以提高模型分割能力 | 深度学习切割直肠肿瘤仍无法与手动分割相比,主要障碍是缺乏高质量数据集 | 旨在提高直肠癌图像分割模型的性能 | 直肠癌CT图像和直肠区域图像 | 计算机视觉 | 直肠癌 | NA | NA | 图像 | 354张直肠癌CT图像和308张直肠区域图像 |
1814 | 2024-08-07 |
Sequential graph convolutional network and DeepRNN based hybrid framework for epileptic seizure detection from EEG signal
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241249874
PMID:38726217
|
研究论文 | 提出了一种结合顺序图卷积网络(SGCN)和深度循环神经网络(DeepRNN)的混合框架,用于从脑电图(EEG)信号中自动检测癫痫发作 | 该框架通过融合门控循环单元(GRU)与传统RNN,解决了梯度消失问题,并提高了模型的复杂性和性能 | NA | 开发一种新的深度学习算法,用于从EEG信号中自动检测癫痫发作 | 癫痫发作的自动检测 | 机器学习 | 癫痫 | 深度学习算法 | 顺序图卷积网络(SGCN)和深度循环神经网络(DeepRNN) | 脑电图(EEG)信号 | 在CHB-MIT和TUH数据集上进行了广泛实验 |
1815 | 2024-08-07 |
Automatic grading evaluation of winter wheat lodging based on deep learning
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1284861
PMID:38726297
|
research paper | 本研究设计了一种分类-语义分割多任务神经网络模型MLP_U-Net,用于自动评估冬小麦倒伏等级,准确估计倒伏角度和倒伏面积 | 提出了一种基于U-Net架构改进的MLP_U-Net模型,通过增强编码器的鲁棒性,提高了分类准确性和分割网络的强度 | NA | 实现冬小麦倒伏等级的准确和及时评估,为农业保险公司评估农业损失和种子选择提供技术支持 | 冬小麦倒伏等级评估 | machine learning | NA | deep learning | MLP_U-Net | image | 82种冬小麦品种 |
1816 | 2024-08-07 |
Neural network in food analytics
2024, Critical reviews in food science and nutrition
IF:7.3Q1
DOI:10.1080/10408398.2022.2139217
PMID:36322538
|
综述 | 本文综述了神经网络(即深度学习,NN)在食品分析领域的应用,重点关注其在食品识别、供应链安全和组学分析等方面的应用 | 神经网络在食品领域的应用显示出其在食品识别、感官评估和光谱及色谱模式识别等方面的优势 | 神经网络在食品科学领域的扩展面临挑战,包括缺乏友好的界面软件包、模型行为难以理解、多源异构数据等问题 | 旨在全面概述神经网络在食品分析中的应用,并讨论其面临的挑战和潜在问题 | 食品分析领域的神经网络应用 | 机器学习 | NA | 神经网络(NN) | 神经网络(NN) | 多源异构数据 | NA |
1817 | 2024-08-07 |
EMPT: a sparsity Transformer for EEG-based motor imagery recognition
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1366294
PMID:38721049
|
研究论文 | 本文提出了一种结合混合专家层和概率稀疏自注意力机制的Transformer神经网络,用于解码脊髓损伤患者运动想象(MI)EEG的时间-频率-空间域特征 | 引入了混合专家层和Kullback-Leibler散度注意力池化机制,通过稀疏化Transformer神经网络,提高了其在EEG数据集上的适用性 | NA | 开发一种新的深度学习方法,用于基于运动想象的EEG数据解码 | 脊髓损伤患者的运动想象EEG信号 | 机器学习 | 脊髓损伤 | Transformer神经网络 | Transformer | EEG信号 | 脊髓损伤患者的MI EEG数据集 |
1818 | 2024-08-07 |
Combining enhanced spectral resolution of EMG and a deep learning approach for knee pathology diagnosis
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302707
PMID:38713653
|
研究论文 | 本研究开发了一种基于肌电图(EMG)的方法,结合深度学习技术用于诊断膝关节病理 | 利用高阶谱分析(HOSA)和深度学习技术,特别是改进的ResNet101 CNN模型,提高了膝关节病理诊断的准确性 | 尽管方法显示出高准确性,但仍存在一些局限性需要在未来研究中特别考虑和解决 | 开发一种基于EMG的诊断方法,用于识别膝关节病理,特别是膝关节骨性关节炎(KOA) | 研究对象包括正常和KOA患者的膝关节周围肌肉的EMG信号 | 机器学习 | 关节疾病 | 高阶谱分析(HOSA) | CNN | 图像 | 使用了公开数据库中的EMG信号数据,具体样本数量未详细说明 |
1819 | 2024-08-07 |
GELT: A graph embeddings based lite-transformer for knowledge tracing
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0301714
PMID:38713679
|
研究论文 | 本文提出了一种基于图嵌入的轻量级Transformer模型GELT,用于知识追踪任务 | 引入了基于图神经网络的模型GELT,并设计了一种节能注意力机制,以提高预测准确性并降低计算成本 | NA | 旨在解决传统深度学习模型在知识追踪任务中解释性不足的问题 | 研究学生技能与问题之间的关系,并预测知识状态 | 机器学习 | NA | 图嵌入 | Transformer | 数据集 | 三个公开的现实世界知识追踪数据集 |
1820 | 2024-08-07 |
ContourTL-Net: Contour-Based Transfer Learning Algorithm for Early-Stage Brain Tumor Detection
2024, International journal of biomedical imaging
IF:3.3Q2
DOI:10.1155/2024/6347920
PMID:38716037
|
研究论文 | 本研究提出了一种基于轮廓的迁移学习模型ContourTL-Net,用于早期脑肿瘤检测,通过深度学习模型提高计算机化脑肿瘤检测的效率。 | 本研究创新性地采用了基于轮廓的MRI图像分割方法和迁移学习模型,以提高早期脑肿瘤检测的准确性和效率。 | NA | 旨在通过深度学习模型提高临床环境中计算机化脑肿瘤检测的效率。 | 早期脑肿瘤检测。 | 计算机视觉 | 脑肿瘤 | 深度学习 | VGG-16 | 图像 | 两个基准数据集 |