本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181 | 2025-04-02 |
Examining the Role of Passive Design Indicators in Energy Burden Reduction: Insights from a Machine Learning and Deep Learning Approach
2024-Feb-15, Building and environment
IF:7.1Q1
DOI:10.1016/j.buildenv.2023.111126
PMID:39155966
|
研究论文 | 本研究结合深度学习和机器学习技术,探讨被动设计指标在降低住宅建筑能源负担中的作用 | 采用深度学习驱动的计算机视觉与机器学习相结合的方法,解决被动设计特征数据稀缺的问题 | 研究仅基于芝加哥大都市区的数据,可能无法推广到其他地区 | 评估被动设计特征对住宅能源负担的影响,为智能和可持续城市建设提供见解 | 芝加哥大都市区的住宅建筑 | 计算机视觉 | NA | 深度学习、机器学习 | CNN、决策树回归、随机森林回归、支持向量回归 | 图像、人口统计数据 | 基于Google街景图像的芝加哥大都市区住宅建筑 |
182 | 2025-04-02 |
Deep learning of sleep apnea-hypopnea events for accurate classification of obstructive sleep apnea and determination of clinical severity
2024-02, Sleep medicine
IF:3.8Q1
DOI:10.1016/j.sleep.2024.01.015
PMID:38232604
|
研究论文 | 本研究评估了一种结合鼻呼吸流量、外周血氧饱和度和心电图信号的深度学习方法,用于改进睡眠呼吸暂停/低通气事件的检测和阻塞性睡眠呼吸暂停的严重程度筛查 | 提出了一种结合多种生理信号和人口统计数据的Xception网络,显著提高了睡眠呼吸暂停/低通气事件的检测准确率和阻塞性睡眠呼吸暂停的严重程度分类性能 | 在低通气事件为主的参与者中分类错误较多 | 开发一种自动检测睡眠呼吸暂停/低通气事件并确定阻塞性睡眠呼吸暂停临床严重程度的方法 | 睡眠呼吸暂停/低通气事件和阻塞性睡眠呼吸暂停患者 | 机器学习 | 阻塞性睡眠呼吸暂停 | 多导睡眠图(PSG) | Xception网络 | 生理信号(呼吸流量、血氧饱和度、心电图)和人口统计数据 | NA |
183 | 2025-04-02 |
Sleep, physical activity and panic attacks: A two-year prospective cohort study using smartwatches, deep learning and an explainable artificial intelligence model
2024-02, Sleep medicine
IF:3.8Q1
DOI:10.1016/j.sleep.2023.12.013
PMID:38154150
|
研究论文 | 一项为期两年的前瞻性队列研究,利用智能手表、深度学习和可解释的人工智能模型预测恐慌发作及焦虑状态 | 首次结合智能手表数据、深度学习和可解释AI方法预测恐慌发作及焦虑状态,并识别关键影响因素 | 样本量中等且依赖自评问卷 | 预测恐慌发作(PA)、状态焦虑(SA)、特质焦虑(TA)和恐慌障碍严重程度(PDS) | 114名恐慌障碍(PD)患者 | 机器学习 | 恐慌障碍 | RNN, LSTM, GRU深度学习模型及SHAP可解释方法 | LSTM | 可穿戴设备记录的睡眠、体力活动和心率数据,以及临床问卷数据 | 114名PD患者,数据收集时间为2020年6月16日至2022年6月10日 |
184 | 2025-04-01 |
Accurate de novo design of high-affinity protein binding macrocycles using deep learning
2024-Nov-18, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.18.622547
PMID:39605685
|
研究论文 | 本文介绍了一种基于深度学习的去噪扩散管道RFpeptides,用于设计针对特定蛋白质靶点的大环肽结合物 | 首次提出了一种稳健的方法用于设计蛋白质结合大环肽,克服了传统大规模筛选方法的资源密集和结合模式控制不足的问题 | 研究仅测试了四种不同蛋白质的设计效果,样本量相对有限 | 开发一种高效、可定制的大环肽设计方法,用于诊断和治疗应用 | 蛋白质靶点的大环肽结合物 | 机器学习 | NA | 深度学习 | 去噪扩散模型 | 蛋白质序列和结构数据 | 针对四种不同蛋白质各测试了20个或更少的设计大环肽 |
185 | 2025-04-01 |
The Updated Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT 2.0)
2024-Nov-01, Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IF:9.1Q1
DOI:10.2967/jnumed.124.268292
PMID:39362762
|
research paper | 介绍更新后的REFINE SPECT 2.0注册表的设计和初步结果,该注册表扩展了患者数量和CT衰减校正成像 | 更新后的注册表包含更多患者数据和CT衰减校正成像,利用深度学习软件检测冠状动脉钙化(CAC),并整合了多模态成像 | 仅有8.4%的患者有侵入性冠状动脉造影数据,CT衰减校正成像仅适用于13,405名患者 | 评估SPECT心肌灌注成像的价值,验证新的人工智能工具在多模态成像中预测不良结局的效果 | 45,252名来自13个中心的患者 | digital pathology | cardiovascular disease | SPECT, CT attenuation correction imaging, deep learning | deep learning | image, clinical data | 45,252名患者(55.9%男性,平均年龄64.7±11.8岁) |
186 | 2024-10-02 |
Deep learning sharpens vistas on biodiversity mapping
2024-Oct-08, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2416358121
PMID:39348547
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
187 | 2025-04-01 |
A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images
2024-Oct, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-024-09688-0
PMID:39417954
|
研究论文 | 本文提出了一种基于深度学习的流程,用于在组织学图像中分割大脑皮层的层状结构 | 开发了一种新颖的计算框架,结合AI工具获取皮层标签,并使用深度学习模型进行皮层分层分割,相比现有方法在分割质量上有显著提升 | 仅针对普通狨猴的Nissl染色和髓鞘染色切片图像进行研究,未在其他物种或染色方法上验证 | 理解大脑皮层层状结构的解剖学特征及其连接模式,为神经系统疾病研究提供见解 | 普通狨猴大脑的Nissl染色和髓鞘染色切片图像 | 数字病理学 | 神经系统疾病 | 深度学习 | 深度学习模型(未明确具体类型) | 图像 | 普通狨猴大脑切片图像(具体数量未说明) |
188 | 2025-04-01 |
Modeling protein-small molecule conformational ensembles with ChemNet
2024-Sep-25, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.25.614868
PMID:39386615
|
research paper | 该研究开发了一种名为ChemNet的图神经网络,用于模拟蛋白质-小分子系统的构象异质性 | ChemNet能够快速生成小分子和蛋白质-小分子系统的构象集合,并在酶设计方面表现出更高的成功率和活性 | NA | 模拟蛋白质-小分子系统的构象异质性,并提高酶设计的成功率 | 蛋白质-小分子系统 | machine learning | NA | graph neural network | ChemNet | atomic level structures | 数据来自Cambridge Structural Database和Protein Data Bank |
189 | 2024-08-07 |
Comment on 'Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis'
2024-Sep-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000001718
PMID:38814316
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
190 | 2025-04-01 |
Automated segmentation of the median nerve in patients with carpal tunnel syndrome
2024-07-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-65840-5
PMID:39033223
|
研究论文 | 本研究利用U-Net网络训练算法,自动分割腕管综合征患者的正中神经超声图像并测量其横截面积 | 采用深度学习技术自动分割正中神经并测量其横截面积,为腕管综合征的诊断提供新方法 | 样本量较小(25例患者和26例健康对照),且自动化测量与手动测量存在10.9%的差异 | 开发一种自动化技术用于腕管综合征的诊断验证 | 腕管综合征患者和健康对照的正中神经超声图像 | 医学影像 | 腕管综合征 | 超声成像 | U-Net | 图像 | 25例腕管综合征患者和26例健康对照的2355张手动分割图像 |
191 | 2025-04-01 |
Investigating the Robustness of Vision Transformers against Label Noise in Medical Image Classification
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC53108.2024.10782929
PMID:40039337
|
研究论文 | 本文研究了Vision Transformers(ViT)在医学图像分类中对抗标签噪声的鲁棒性,并与CNNs进行了比较 | 首次系统地研究了基于Transformer的架构在医学图像分类中处理标签噪声的能力 | 仅使用了两个医学图像分类数据集进行验证 | 探索ViT在医学图像分类中对标签噪声的鲁棒性 | 医学图像分类数据集 | 计算机视觉 | NA | 监督深度学习 | Vision Transformer (ViT), CNN | 医学图像 | 两个数据集:COVID-DU-Ex和NCT-CRC-HE-100K |
192 | 2025-04-01 |
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT
2024-Jun-27, Research square
DOI:10.21203/rs.3.rs-4536158/v1
PMID:38978567
|
研究论文 | 本文提出了一种名为TACIT的无监督算法,用于细胞注释,无需训练数据即可识别细胞类型和状态 | 开发了TACIT算法,无需训练数据即可进行细胞注释,并在多组学分析中识别模糊细胞,提高了准确性和可扩展性 | 虽然TACIT在多个数据集中表现良好,但其在更广泛细胞类型和疾病中的应用仍需进一步验证 | 解决空间生物学中细胞类型和状态识别的挑战,提高注释的准确性和效率 | 细胞类型和状态,特别是在脑、肠道和腺体三个生态位中的细胞 | 空间生物学 | 炎症性腺体疾病 | 多组学分析,空间转录组学和蛋白质组学 | 无监督算法 | 多组学数据 | 5个数据集,包含5,000,000个细胞和51种细胞类型 |
193 | 2025-04-01 |
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT
2024-Jun-03, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.31.596861
PMID:38895230
|
研究论文 | 本文提出了一种名为TACIT的无监督算法,用于细胞注释,通过预定义的签名在无需训练数据的情况下操作,利用无偏阈值区分阳性细胞与背景,专注于相关标记以识别多组学分析中的模糊细胞 | 开发了TACIT算法,一种无需训练数据的无监督细胞注释方法,通过无偏阈值和聚焦相关标记来提高准确性和可扩展性 | 未明确提及算法的局限性,但可能包括对预定义签名的依赖以及在更广泛细胞类型和状态中的泛化能力 | 解决空间生物学中细胞类型和状态识别的时间消耗和易出错问题 | 细胞类型和状态,特别是在脑、肠和腺体三个生态位中的细胞 | 空间生物学 | 炎症性腺体疾病 | 多组学分析,空间转录组学和蛋白质组学 | 无监督算法 | 多组学数据 | 五个数据集(5,000,000个细胞;51种细胞类型) |
194 | 2025-04-01 |
VesselBoost: A Python Toolbox for Small Blood Vessel Segmentation in Human Magnetic Resonance Angiography Data
2024-May-22, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.22.595251
PMID:38826408
|
research paper | 介绍了一个名为VesselBoost的Python工具箱,用于在人类磁共振血管造影数据中进行小血管分割 | 结合深度学习和不完美训练标签进行血管分割,并利用创新的数据增强技术 | 需要大量正确和全面标记的数据集,这在实践中可能难以获得 | 通过高分辨率MRA数据进行小血管的定量表征和精确表示,以支持血流模拟 | 人类大脑的小血管 | digital pathology | cardiovascular disease | MRA, deep learning | deep learning-based methods | image | NA |
195 | 2025-04-01 |
Areas of interest and sentiment analysis towards second generation antipsychotics, lithium and mood stabilizing anticonvulsants: Unsupervised analysis using Twitter
2024-04-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2024.01.234
PMID:38290587
|
研究论文 | 通过分析Twitter上关于第二代抗精神病药物、锂盐和情绪稳定抗癫痫药物的提及和情感,探讨患者和公众对这些药物的态度和信念 | 利用社交媒体数据(Twitter)和AI技术(机器学习和深度学习)分析患者对精神疾病药物的态度和情感,揭示了不同语言和文化背景下的讨论差异 | Twitter数据的简短性可能无法完全捕捉讨论的细微差别,且研究药物的广泛治疗用途使得难以隔离特定疾病的讨论,仅分析了英语和西班牙语的推文,限制了文化广度的发现 | 理解患者和公众对精神分裂症及相关精神病性障碍(SRD)或双相情感障碍(BD)治疗药物的态度和信念 | Twitter上关于第二代抗精神病药物、锂盐和情绪稳定抗癫痫药物的提及和情感 | 自然语言处理 | 精神分裂症及相关精神病性障碍(SRD)或双相情感障碍(BD) | 机器学习, 深度学习, 自然语言处理 | NA | 文本 | 893,289条推文(2008年至2022年) |
196 | 2025-04-01 |
Larger hypothalamic subfield volumes in patients with chronic insomnia disorder and relationships to levels of corticotropin-releasing hormone
2024-04-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2024.02.023
PMID:38341156
|
研究论文 | 本研究探讨了慢性失眠症患者与健康对照组在下丘脑及其亚区体积上的差异,并分析了这些差异与失眠症状严重程度及HPA轴相关血液生物标志物的关系 | 首次使用基于深度学习的自动分割工具研究慢性失眠症患者下丘脑亚区体积变化,并揭示前部下丘脑肥大在CRH水平与失眠严重程度关系中的中介作用 | 研究样本量相对有限,且为横断面研究无法确定因果关系 | 探究慢性失眠症患者下丘脑亚区体积变化及其与HPA轴功能的关系 | 150名慢性失眠症患者和155名人口统计学匹配的健康对照 | 数字病理学 | 睡眠障碍 | T1加权结构磁共振扫描,深度学习自动分割 | 深度学习 | MRI图像 | 305人(150名患者和155名对照) |
197 | 2025-04-01 |
Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice
2024-04, Sleep medicine reviews
IF:11.2Q1
DOI:10.1016/j.smrv.2024.101897
PMID:38306788
|
综述 | 本文全面回顾了基于深度学习的睡眠分期技术的最新方法,包括数据处理、建模、验证及临床应用 | 深入探讨了深度学习在睡眠分期中的应用,特别是在大规模数据集、跨学科合作和人机交互方面的创新 | 未提及具体实验数据或模型性能的详细比较 | 提高睡眠分期的效率和准确性,促进其在临床实践和日常生活中的应用 | 睡眠分期的自动化系统 | 机器学习 | 睡眠障碍 | 深度学习 | NA | 信号数据 | NA |
198 | 2025-03-30 |
Addressing Class Imbalance with Latent Diffusion-based Data Augmentation for Improving Disease Classification in Pediatric Chest X-rays
2024-Dec, Proceedings. IEEE International Conference on Bioinformatics and Biomedicine
DOI:10.1109/bibm62325.2024.10822172
PMID:40134830
|
研究论文 | 本研究探讨了使用基于潜在扩散模型的数据增强技术来解决儿科胸部X光片分类中的类别不平衡问题 | 首次评估了文本引导的图像到图像潜在扩散模型在合成疾病阳性胸部X光片中的应用,并验证了其在改善分类性能方面的有效性 | 研究仅针对两种特定肺部疾病(肺炎和支气管肺炎)进行了验证,未涵盖更广泛的儿科胸部疾病 | 解决医学图像分类中的类别不平衡问题,提高深度学习模型在儿科胸部X光片疾病分类中的性能 | 儿科胸部X光片(CXRs) | 数字病理学 | 儿科肺部疾病(肺炎和支气管肺炎) | 潜在扩散模型(LDM) | Inception-V3, 潜在扩散模型(LDM) | 医学图像(胸部X光片) | 未明确说明具体样本数量,但涉及类别不平衡的儿科胸部X光片数据集 |
199 | 2025-03-30 |
STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae685
PMID:39764614
|
研究论文 | 介绍了一种名为STMGraph的双重掩蔽动态图注意力模型,用于空间转录组数据的全局上下文感知分析 | 提出了一种结合双重掩蔽机制(MASK-REMASK)与动态图注意力模型(DGAT)的新型深度学习框架,能够更好地处理空间转录组数据 | 未明确提及具体局限性 | 提高空间转录组数据分析的准确性和鲁棒性,实现微环境异质性检测、空间域聚类和批次效应校正 | 空间转录组数据 | 生物信息学 | NA | 空间转录组技术 | 动态图注意力模型(DGAT) | 空间转录组数据 | 未明确提及具体样本量 |
200 | 2025-03-30 |
Artificial intelligence-based assessment of built environment from Google Street View and coronary artery disease prevalence
2024-May-07, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehae158
PMID:38544295
|
研究论文 | 本研究利用Google街景图像和深度学习技术评估建筑环境与冠状动脉疾病患病率之间的关联 | 首次将深度学习应用于Google街景图像分析,建立建筑环境特征与心血管疾病患病率的关联模型 | 横断面研究设计无法确定因果关系,研究仅限于美国七个城市 | 探索基于机器视觉的建筑环境评估与心血管疾病患病率之间的关系 | 美国七个城市的789个人口普查区的建筑环境特征 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN, 线性混合效应模型 | 图像 | 53万张Google街景图像,覆盖7个美国城市的789个人口普查区 |